❤️ 移位运算
移位规则:符号位不变, 因为负数移位之后还是负数, 不可能因为一个移位就变成正数了
移位运算分为 逻辑移位 和 算数移位
算数移位(针对有符号数)
例题 :
1. 如 [X]原 = 0,1101,左移一位为0,1010 右移一位为 0,0110(空位补0)
2. 如 [X]原 = 1,1101,左移一位为1,1010 右移一位为 1,0110(空位补0)
3. 如 [X]反 = 1,1101,左移一位为1,1011 右移一位为 1,1110(空位补1)
4. 如 [X]补 = 1,1101,左移一位为1,1010 右移一位为 1,1110(左移空位补0, 右移空位补1)
l逻辑移位(针对无符号数)
不论左移右移,空位补0
❤️ 补码加减法(连同符号位一起相加减)
-
加法的基本公式为:
整数 [A]补+[B]补=[A+B]补 (mod 2^(n+1) )
小数 [A]补+[B]补=[A+B]补 (mod 2)
-
加法的基本公式为:
整数 [A-B]补=[A]补+[ - B]补 (mod 2^(n+1) )
小数 [A-B]补=[A]补+[ - B]补 (mod 2)
-
额外补充:
[X]原=[ [X]补 ]补
mod解释::对于上面那个 mod 是不是有很多问号哈,那个就是比如你两个数相加的时候符号位变成了两个,这时是负还是正呢,所以呢就是要比如整数相加的mod 2^(n+1) ),把n+1那位给去掉(n为代码长度),如果刚好没有这一位那就不用去掉了(PS:不理解没关系,你就记住符号位就一位,)
例题1:
例题2:
❤️ 溢出现象
如例题1,上面那种超出机器字长的现象叫做溢出现象
溢出的原则是:符号位由于进位变成两个符号位,如果两个符号位不同则表示溢出,如果相同表示没有溢出
符号位 | 是否溢出 |
---|---|
00 | 结果为正,无溢出 |
01 | 正溢,(大于机器所能表示的最大正数) |
10 | 负溢,(小于机器所能表示的最小负数) |
11 | 结果为负,无溢出 |
❤️ 习题
1.两补码相加,采用1位符号位,则当()时,表示结果溢出
A、最高位有进位
B、最高位进位和次高位进位异或结果为0
C、最高位为1
D、最高位进位和次高位进位异或结果为1
我的答案:D
2.在补码的加减法中,用两位符号位判断溢出,两符号位为10时,表示()
A、结果为正数,无溢出
B、结果正溢出
C、结果负溢出
D、结果为负数,无溢出
我的答案:C
3.如果x为负数,由[x]补求[-x]补是( )
A、[x]补各位保持不变
B、[x]补符号位变反,其他各位不变
C、[x]补除符号位外,各位变反,末位加1
D、[x]补连同符号位一起各位变反,末位加1
我的答案:D
4.在定点二进制运算中,减法运算一般通过( )来实现。
A、原码运算的二进制减法器
B、补码运算的二进制减法器
C、补码运算的十进制加法器
D、补码运算的二进制加法器
我的答案:D
5.原码定点整数0101 0101左移2位后的值为()
A、0100 0111
B、0101 0100
C、0100 0110
D、0101 0101
我的答案:B