二进制加减法:原码、反码、补码
1.十进制下的计算
1.模数
假设下文【模】定义如下:某个可度量系统的度量范围
实际【模】在度量系统中无法表示,该值是系统溢出值,遇【模】则表示要进位了,系统可度量值为【模】的余数
如:
时:12 ------ 0,1,2,3…11
分:60 ------ 0,1,2,3…59
秒:60 ------ 0,1,2,3…59
2.补数
一个可确定范围的度量系统,取模为 12,为方便演示我们将其环形排列:
综上:当度量系统模为 12 时,4 和 8 互为补数,即 4 + 8 = 12
结论:在有模的度量系统中,减某个值等价于加上其补数(可能进位丢失),即将减法转为加法处理 此也为计算机处理二进制减法的做法
2.二进制数的存储
1.计算机计数
计算机用二进制表示数值,且规定内存的最高位作为符号位,用0表示正数,用1表示负数
如一个32位计算机,可以理解成 模 = 2^32 的度量系统,计数值超出 2^32 后则会溢出导致计算异常
又如Java中的Integer类型,长度为 4 字节,即 32 比特,除去最高位为符号位,其实际范围为:-2^31 ~ 2^31 - 1
2.原码
取整数绝对值转换为二进制:
±6 原码:00000000 00000000 00000000 00000110
3.反码
正整数反码为其本身(原码)
负整数反码为其原码按位取反:
Integer -6
-6 反码:11111111 11111111