行程长度编码(Run-Length Encoding,RLE)压缩算法是Windows系统中使用的一种图像文件压缩方法,基本思想是:将一扫描行中颜色值相同的相邻像素用两个字段表示,第一个字段是一个计数值,用于指定像素重复的次数;第二个字段是具体像素的值,主要通过压缩除掉数据中的冗余字节或字节中的冗余位,从而达到减少文件所占空间的目的。
使用RLE压缩方法可以将 RRRRRGGBBBBBB 压缩为 5R2G6B ,而且RLE压缩方法还是无损压缩技术。
以二值序列为例:
上图中黑色表示0,无色表示1的二值序列。若直接进行行程编码,则表示:
3(11)、12 (1100)、4(100)、9(1001)、1(1)
连在一起为:11110010010011
但是,在我们解码时,并不确定在何处断点,因此需要对该编码进行变换
方法:对编码增加可以表示分段的首部
编码部分:
3---> 011---> 010
12---> 1101100---> 1101011
4---> 100---> 011
9---> 1101001---> 1101000
1---> 001---> 000
得:01011010110111101000000
解码部分:
RLE所能获得的压缩比主要取决于图像本身的特点,图像中具有相同颜色的图像块越大,图像块数目越少,压缩比就越高。
行程编码适合于对二值图像的编码,如果图像由很多块颜色会灰度相同的大面积区域组成,采用行程编码可以达到很大的压缩比。
RLE图像压缩例子:
import cv2 as cv
import numpy as np
##彩色图像灰度化
#image = cv.imread('image/shayu.jpg',1)
image = cv.imread('image/fruit.jpg',1)
grayimg = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
rows, cols = grayimg.shape
image1 = grayimg.flatten() #把灰度化后的二维图像降维为一维列表
#print(len(image1))
#二值化操作
for i in range(len(image1)):
if image1[i] >= 127:
image1[i] = 255
if image1[i] < 127:
image1[i] = 0
data = []
image3 = []
count = 1
#行程压缩编码
for i in range(len(image1)-1):
if (count == 1):
image3.append(image1[i])
if image1[i] == image1[i+1]:
count = count + 1
if i == len(image1) - 2:
image3.append(image1[i])
data.append(count)
else:
data.append(count)
count = 1
if(image1[len(image1)-1] != image1[-1]):
image3.append(image1[len(image1)-1])
data.append(1)
#压缩率
ys_rate = len(image3)/len(image1)*100
print('压缩率为' + str(ys_rate) + '%')
#行程编码解码
rec_image = []
for i in range(len(data)):
for j in range(data[i]):
rec_image.append(image3[i])
rec_image = np.reshape(rec_image,(rows,cols))
#cv.imwrite('image/output.jpg',rec_image)
cv.imwrite('image/output_fruit.jpg',rec_image)
cv.imshow('rec_image',rec_image) #重新输出二值化图像
cv.waitKey(0)
reference:
图像处理(一):基于行程编码的图像压缩python实现_取不到名字的Z先生的博客-CSDN博客_python行程编码
https://blog.csdn.net/qq_42233962/article/details/105482765