YOLOv8进行改进并训练自定义的数据集

一.训练数据集准备

        YOLOv8的训练数据格式与YOLOv5的训练数据格式一致,这一部分可以进行沿用。之前博文有发布VOC标注格式转YOLO标注格式的脚本,有需要可以查看。

二.项目克隆

        YOLOv8项目文件可以直接去github上下载zip文件然后解压,也可以直接Git克隆。项目官方地址

三.训练前准备

        这一部分首先保证机子上安装好了深度学习环境(可以跑YOLOv5就行)。

        下一步用Pycharm打开YOLOv8项目,打开项目的终端,输入

pip install -r requirements.txt

         到这里。如果按照官方的操作指南需安装ultralytics这个包(我认为,这也是YOLOv8相较于YOLOv5区别最大的地方),但是如果大家要对YOLOv8做出改进,这里可能会出现问题。因此,我推荐大家不要执行这一步操作(如果不需要对YOLOv8做出改进,可以按照官方的指南进行操作)。

四.模型训练

        第一、需要创建数据集的yanl文件

 NWPU VHR-10 dataset/split_data

        train

                images

                        000001.jpg

                        000002.jpg

                        000003.jpg

                        ......

                labels 

                        000001.txt

                        000002.txt

                        000003.txt

                        ......

        val

                images

                        ......

                labels

                        ......

        test

                images

                        ......

                labels

                        ......

        第二、下载YOLOv8的预训练权重文件(这一步也可以不需要)

        链接地址

        第三、添加自定义模块(这里如果不对YOLOv8进行改进可以直接看第五步) 

        比如这里我要在YOLOv8的基础上添加CBAM注意力模块,首先打开modules.py,在下方添加CBAM注意力模块的代码实现。

        再打开task.py,在对应位置添加CBAM模块的声明

 

        第四、根据自己设计的网络结构修改yaml文件 

        比如这里我将YOLOv8中部分的C2f模块替换为C3模块。

         第五、开始训练

        这里也是和YOLOv5有着较大的差别,在YOLOv8中train、val和test的参数设置都是依赖于default.yaml这个文件,因此在对参数设置进行修改前,建议先对该文件进行备份。

        这里进行切换任务与模式。

        这里需要注意,在YOLOv5中是同时包含--weights预训练权重文件和--cfg模型文件,预训练权重(.pt)是由官方提供,模型文件(.yaml)是自己修改的文件,并在训练中导入相同层的权重信息。而在YOLOv8中,只有--model这一个参数设置,且同时允许.pt文件与.yaml文件的接受处理。因此,这里的话,我建议用yaml文件,因为这样我们才能载入我们自己设计的网络结构(注:从目前的实验来看,只导入yaml文件也能进行迁移学习,载入预训练权重文件)。--data存放我们数据集的yaml文件。其他参数可以根据自己的需求自己设定(注:这里发现YOLOv8在训练时GPU的内存占用比YOLOv5的大许多,有bug。部分博主说可通过减少workers来缓解此类现象)。

# Train settings -------------------------------------------------------------------------------------------------------
model:  # path to model file, i.e. yolov8n.pt, yolov8n.yaml
data:  # path to data file, i.e. i.e. coco128.yaml
epochs: 100  # number of epochs to train for
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 16  # number of images per batch (-1 for AutoBatch)
imgsz: 640  # size of input images as integer or w,h
save: True  # save train checkpoints and predict results
cache: False  # True/ram, disk or False. Use cache for data loading
device:  # device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu
workers: 8  # number of worker threads for data loading (per RANK if DDP)
project:  # project name
name:  # experiment name
exist_ok: False  # whether to overwrite existing experiment
pretrained: False  # whether to use a pretrained model
optimizer: SGD  # optimizer to use, choices=['SGD', 'Adam', 'AdamW', 'RMSProp']
verbose: True  # whether to print verbose output
seed: 0  # random seed for reproducibility
deterministic: True  # whether to enable deterministic mode
single_cls: False  # train multi-class data as single-class
image_weights: False  # use weighted image selection for training
rect: False  # support rectangular training if mode='train', support rectangular evaluation if mode='val'
cos_lr: False  # use cosine learning rate scheduler
close_mosaic: 10  # disable mosaic augmentation for final 10 epochs
resume: False  # resume training from last checkpoint
min_memory: False  # minimize memory footprint loss function, choices=[False, True, <roll_out_thr>]

        最后,运行train.py即可。

python train.py

五.模型验证与测试

        模型的验证与测试步骤基本和训练一样,先修改验证/测试的设置,也是在default.yaml中,然后执行val.py和predict.py即可

### 回答1: 要使用OpenCV训练YOLOv8模型,需要按照以下步骤进行操作: 1. 数据集准备: 首先,需要准备自己的数据集数据集应包含图像和相应的标签文件,标签文件中包含每个图像中目标物体的类别和坐标信息。确保数据集中的目标物体类别与预定义的YOLOv8模型类别一致。 2. 标注图像: 使用标注工具,如LabelImg,对数据集中的图像进行标注。标注包括在图像中框出目标物体,并为每个框提供类别标签和坐标信息。标注完成后,会产生相应的标签文件。 3. 数据集划分: 将数据集划分为训练集和验证集。通常,将大部分数据用于训练,少部分用于验证。划分的比例可以根据需求进行调整。 4. 数据预处理: 对图像进行预处理,以满足YOLOv8模型的输入要求。例如,可以调整图像大小、归一化图像像素值等。 5. 配置文件: 创建YOLOv8的配置文件,其中包含模型的超参数设置、数据集路径、类别数目等信息。可参考Darknet框架提供的示例配置文件进行修改。 6. 网络模型训练: 使用OpenCV加载YOLOv8模型,并对其进行训练。在训练过程中,通过调整超参数、学习率等来优化模型的性能。训练过程中,模型会根据训练集的图像和标签进行梯度下降更新权重。 7. 模型评估和调优: 使用验证集对训练好的模型进行评估,通过计算精度、召回率等指标来评估模型的性能。若模型效果不佳,可尝试调整训练策略、数据增强等方法来改进模型。 8. 模型应用: 训练完成后,可以使用OpenCV中的YOLOv8模型进行目标检测。加载模型并输入待检测的图像,模型会输出检测到的目标物体的类别和坐标信息。 总结: 使用OpenCV训练YOLOv8模型的过程包括数据集准备、标注图像、数据预处理、配置文件创建、网络模型训练、模型评估和调优等步骤。这些步骤能够帮助我们基于自己的数据集训练出一个适用于目标检测YOLOv8模型。 ### 回答2: YOLOv8是一种先进的目标检测算法,它可以通过训练自己的数据集来实现目标检测任务。在使用YOLOv8之前,我们需要准备自己的数据集进行标注。 准备训练数据集时,需要收集包含目标的图像,并对每个目标进行标注。标注的方法一般有两种:边界框标注和像素级标注。对于YOLOv8算法,我们一般使用边界框标注,即在图像中标注出目标的边界框。 在数据集准备完毕后,我们需要使用OpenCV库进行数据处理。首先,我们需要读取每张图像,并对其进行预处理,例如调整大小、归一化等。接下来,我们需要将标注的目标边界框转换为YOLOv8要求的格式YOLOv8目标标注格式是每个目标的类别编号和边界框的四个坐标值。 在进行训练之前,我们还需要准备一个包含所有类别名称的文件,该文件将用于指导YOLOv8识别和分类目标训练YOLOv8的过程中,我们需要定义网络结构,并设置一些超参数,如学习率、批次大小和训练轮数等。然后,我们可以使用准备好的数据集对网络进行训练训练过程中,YOLOv8会不断调整模型参数,以提高目标检测的准确率。 在训练完成后,我们可以使用自己的数据集来测试训练好的YOLOv8模型。通过输入测试图像,YOLOv8将输出检测到的目标类别和位置信息。 总之,YOLOv8是一种强大的目标检测算法,通过使用OpenCV库和自己的数据集,我们可以训练出适用于特定任务的自定义目标检测模型。 ### 回答3: YOLOv8是一种目标检测算法,可以用于训练自己的数据集。OpenCV是一个开源的计算机视觉库,它提供了一系列图像处理和计算机视觉算法的函数和工具。 要用YOLOv8训练自己的数据集,首先需要准备好以下几个步骤: 1. 数据集准备:收集图像数据并对其进行标注,将目标物体的边界框和类别信息标记出来。可以使用OpenCV的绘图功能来手动标注数据集,也可以使用一些标注工具来自动标注。 2. 数据集划分:将数据集划分为训练集、验证集和测试集。通常会将大部分样本用于训练,一小部分用于验证和测试。 3. 配置文件:YOLOv8通过配置文件定义了一些重要的参数,如网络结构、训练参数、数据集路径等。可以使用OpenCV读取和修改这些配置文件。 4. 模型训练:使用准备好的数据集和配置文件,将YOLOv8模型进行训练。可以使用OpenCV的图像读取和预处理功能来加载数据集,然后使用训练算法进行迭代优化,直到模型收敛或达到预定的训练轮次。 5. 模型评估:训练完成后,可以使用测试集对训练好的模型进行评估,计算准确率、召回率等指标,来判断模型的性能。 最后,要注意的是,这只是一个概要的流程。实际上,使用YOLOv8训练自己的数据集需要解决很多实际问题,如数据预处理、模型调参、训练策略等。使用OpenCV可以提供一些便利的功能和接口,但需要更深入的学习和实践才能掌握这些技术。
评论 67
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值