python分治算法_2.Python算法之分治算法思想

1.什么是分治算法?

分治算法就是对一个问题采取各个击破的方法,将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。只要求出子问题的解,就可得到原问题的解。

2.为什么需要分治算法?

在编程过程中,经常遇到处理数据相当多、求解过程比较复杂、直接求解比较耗时的问题。

在求解这类问题时,可以采用各个击破的方法。

3.分治算法基础

具体做法是:先把这个问题分解成几个较小的子问题,找到求出这几个子问题的解法后,再找到合适的方法,把它们组合成求整个大问题的解。如果这些子问题还是比较大,可以继续把它们分成几个更小的子问题,以此类推,直至可以直接求出解为止。这就是分治算法的基本思想

4.分治算法的解题一般步骤

(1)分解,将要解决的问题划分为若干个规模较小的同类问题。

(2)求解,当子问题划分得足够小时,用较简单的方法解决。

(3)合并,按原问题的要求,将子问题的逐层合并构成原问题的解。

5. 用分治算法--求顺序表中的最大值

# 基本子算法(子问题规模小于或等于2时)

def get_max(max_list):

return max(max_list)

# 分治法

def solve(init_list):

list_length = len(init_list)

# 若问题规模小于或等于2时,直接调用方法解决完成

if list_length <= 2:

return get_max(init_list)

# 问题规模大时,开始分治算法的步骤

# 1.分解(子问题的规模为 n/2),分别取列表其中的前半部分和后半部分

left_list = init_list[:list_length // 2]

right_list = init_list[list_length // 2:]

# 2.分治、递归(一直递归,分解,知道求出前半部分的最大值,和后半部分的最大值)

left_max = solve(left_list)

right_max = solve(right_list)

# 3.合并 (在把前半部分的最大值和后半部分的最大值做个比较,相当于求整个大数组的最大值)

return get_max([left_max, right_max])

if __name__ == '__main__':

test_list = [12, 6, 5956, 7, 8, 98, 46, 46, 4, 451, 9684, 4]

# 打印出最大值

print(solve(test_list))

# 9684

5. 用分治算法--判断某个元素是否在列表中

# 子问题算法(子问题规模为1)

def is_in_list(init_list, el):

return [False, True][init_list[0] == el]

# 分治法

def solve(init_list, el):

list_length = len(init_list)

if list_length == 1: # 若问题规模等于1,即列表中

return is_in_list(init_list, el)

# 分解(子问题规模为 n/2)

left_list = init_list[:list_length // 2]

right_list = init_list[list_length // 2:]

# 分治合并 递归(一直进行拆分, or 只有所有都是 False,才返回假 False)

# 所以只要有一个元素在里面,就判定元素在该列表中,

res = solve(left_list, el) or solve(right_list, el)

return res

if __name__ == '__main__':

test_list = [12, 6, 5956, 7, 8, 98, 46, 46, 4, 451, 9684, 4]

# 查找

print(test_list)

print("判断45是否在列表中:", solve(test_list, 45))

print("判断4是否在列表中:", solve(test_list, 4))

运行结果:

a5af810755ef35d7489026ead7a0ef22.png

6. 用分治算法--找出一组序列中第K小的元素

# 划分(基于主元 pivot)

def partition(seq):

pi = seq[0] # 挑选主元

min_pi = [x for x in seq[1:] if x <= pi] # 所有小于主元的元素

max_pi = [x for x in seq[1:] if x > pi] # 所有大于主元的元素

return pi, min_pi, max_pi

# 查找第 K 小的元素

def select(seq, k):

# 分解

pi, min_pi, max_pi = partition(seq)

min_pi_length = len(min_pi) # 所有小于主元的元素长度

# 如果查第 k 小的元素刚好和 比主元小的元素列表长度 相等,则此时pi(主元)则刚好为第K小的元素

if min_pi_length == k:

return pi

# 长度小于k时,

elif min_pi_length < k:

# 分治、递归

return select(max_pi, k - min_pi_length - 1)

else:

# 分治、递归

return select(min_pi, k)

if __name__ == '__main__':

seq = [12, 6, 5956, 7, 8, 98, 46, 46, 4, 451, 9684, 4]

print(seq)

print("列表中第3小的:", select(seq, 3))

print("列表中第1小的:", select(seq, 1))

wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

运行结果:

5c53918565eb97fef6709359aca84c72.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值