学习自《算法笔记》
求斐波那契数列第n项的值
#include <cstdio>
int F(int n) {
if (n == 0 || n==1) return 1;
else {
return F(n - 1) + F(n - 2);
}
}
int main() {
int n;
scanf("%d", &n);
int re = F(n);
printf("%d", re);
return 0;
}
全排列
const int maxn = 11;
int n, P[maxn];
//记录是否用到排列中
bool hashTable[maxn] = { false };
//当前处理排序的第几位
void generateP(int index) {
if (index == n + 1) {
for (int i = 1; i <= n; i++) {
printf("%d ", P[i]);
}
printf("\n");
return;
}
for (int i = 1; i <= n; i++) {
if (hashTable[i] == false) {
P[index] = i;
hashTable[i] = true;
generateP(index + 1);
hashTable[i] = false;
}
}
}
int main() {
n = 5;
generateP(1);
return 0;
}
n皇后,在排列基础上多一步判断是否在对角线。
这种方法用递归把所有排列列了出来,然后两两对比结果,为暴力法。
#include <cstdio>
#include<math.h>
const int maxn = 11;
int n = 0, count = 0;
int P[maxn];
bool hashTable[maxn];
void generateP(int index) {
if (index == n + 1) {
bool flag = true;
//遍历所有两个皇后
for (int i = 1; i <= n; i++) {
for (int j = i+1; j <= n; j++) {
if (abs(i - j) == abs(P[i] - P[j])) flag = false;
}
}
if (flag == true)count++;
return;
}
for (int i = 1; i <= n; i++) {
if (hashTable[i] == false) {
P[index] = i;
hashTable[i] = true;
generateP(index + 1);
hashTable[i] = false;
}
}
}
int main() {
n = 8;
generateP(1);
printf("%d", count);
return 0;
}
而在没有完全列举之前就发现不用继续往下递归了(即无论后面怎么排都无法不在一个斜线上)这种就叫回溯。
#include <cstdio>
#include<math.h>
const int maxn = 11;
int n = 0, count = 0;
int P[maxn];
bool hashTable[maxn] = { false };
void generateP(int index) {
if (index == n+1) {
//能到这里一定合法
count++;
return;
}
//在每一步放棋子之前,先看看是不是不管怎么放都无法满足条件
for (int i = 1; i <= n; i++) {
if (hashTable[i] == false) {
bool flag = true;
for (int pre = 1; pre < index; pre++) {//遍历每一列
if (abs(pre - index) == abs(P[pre] - i)) {
flag=false;
break;
}
}
if (flag) {
//可以把皇后放在i行
P[index] = i;
hashTable[i] = true;
generateP(index+1);
hashTable[i] = false;
}
}
}
}
int main() {
n = 8;
generateP(1);
printf("%d", count);
return 0;
}