递归分治(斐波那契数列、全排列、n皇后)

学习自《算法笔记》
求斐波那契数列第n项的值

#include <cstdio>

int F(int n) {
	if (n == 0 || n==1) return 1;
	else {
		return F(n - 1) + F(n - 2); 
	}
}

int main() {
	int n;
	scanf("%d", &n);
	int re = F(n);
	printf("%d", re);
	return 0;
}

全排列
在这里插入图片描述

const int maxn = 11;
int n, P[maxn];
//记录是否用到排列中
bool hashTable[maxn] = { false };
//当前处理排序的第几位
void generateP(int index) {
	if (index == n + 1) {
		for (int i = 1; i <= n; i++) {
			printf("%d ", P[i]);
		}
		printf("\n");
		return;
	}
	for (int i = 1; i <= n; i++) {
		if (hashTable[i] == false) {
			P[index] = i;
			hashTable[i] = true;
			generateP(index + 1);
			hashTable[i] = false;
		}
	}
}
int main() {
	n = 5;
	generateP(1);
	return 0;
}

n皇后,在排列基础上多一步判断是否在对角线。
这种方法用递归把所有排列列了出来,然后两两对比结果,为暴力法。

#include <cstdio>
#include<math.h>

const int maxn = 11;
int n = 0, count = 0;
int P[maxn];
bool hashTable[maxn];

void generateP(int index) {
	if (index == n + 1) {
		bool flag = true;
		//遍历所有两个皇后
		for (int i = 1; i <= n; i++) {
			for (int j = i+1; j <= n; j++) {
				if (abs(i - j) == abs(P[i] - P[j])) flag = false;
			}
		}
		if (flag == true)count++;
		return;
	}
	for (int i = 1; i <= n; i++) {
		if (hashTable[i] == false) {
			P[index] = i;
			hashTable[i] = true;
			generateP(index + 1);
			hashTable[i] = false;
		}
	}
}

int main() {
	n = 8;
	generateP(1);
	printf("%d", count);
	return 0;
}

而在没有完全列举之前就发现不用继续往下递归了(即无论后面怎么排都无法不在一个斜线上)这种就叫回溯。

#include <cstdio>
#include<math.h>

const int maxn = 11;
int n = 0, count = 0;
int P[maxn];
bool hashTable[maxn] = { false };

void generateP(int index) {
	if (index  == n+1) {
		//能到这里一定合法
		count++;
		return;
	}
	//在每一步放棋子之前,先看看是不是不管怎么放都无法满足条件
	
	for (int i = 1; i <= n; i++) {
		if (hashTable[i] == false) {
			bool flag = true;
			for (int pre = 1; pre < index; pre++) {//遍历每一列
				if (abs(pre - index) == abs(P[pre] - i)) {
					flag=false;
					break;
				}
			}

			if (flag) {
				//可以把皇后放在i行
				P[index] = i;
				hashTable[i] = true;
				generateP(index+1);
				hashTable[i] = false;
			}
		}
	}
}

int main() {
	n = 8;
	generateP(1);
	printf("%d", count);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值