数据预处理(二):缺失值处理

本文探讨了数据预处理中的关键步骤——缺失值处理。介绍了如何使用sklearn库和pandas与numpy进行填充或删除缺失值的操作,包括fillna()和dropna()函数的应用。
摘要由CSDN通过智能技术生成

缺失值

在数据挖掘工作中,数据往往会出现有部分缺失值,因此缺失值填补属于数据处理的重要部分。

一、使用skearn进行缺失值填补

函数介绍:

sklearn.impute.SimpleImputer(missing_values=nan,strategy='mean',fill_value = None,copy=True)

参数 含义与输入
missing_values 缺失值的格式,默认为np.nan
stratege 填补缺失值的策略,默认为均值;mean代表均值,median代表中值,most_frequent代表众数,constant代表常数
fill_values 在填补常数时,设置常数的值,默认为0
copy 是否创建特征矩阵的副本,默认为True

代码:

#以均值填补为例
#导入sklearn填补缺失值的包
from sklearn.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值