xgboost参数调优_XGBoost实战和参数详解

本文详细介绍了XGBoost的优点,如正则化、并行处理能力,并深入探讨了参数设置,包括eta、gamma、max_depth、min_child_weight等关键参数的含义和作用。还分享了如何通过网格搜索确定max_depth和min_child_weight,以及调优过程中的注意事项,如防止过拟合的策略和正则化参数的调整。
摘要由CSDN通过智能技术生成

xgboost优点

  • 正则化
  • 并行处理?
  • 灵活性,支持自定义目标函数和损失函数,二阶可导
  • 缺失值的处理
  • 剪枝,不容易过拟合
  • 内置了交叉验证

参数的设置

params = {
    'booster': 'gbtree',            
    'objective': 'multi:softmax',  # 多分类的问题
    'num_class': 10,               # 类别数,与 multisoftmax 并用
    'gamma': 0.1,                  # 用于控制是否后剪枝的参数,越大越保守,一般0.1、0.2这样子。
    'max_depth': 12,               # 构建树的深度,越大越容易过拟合
    'lambda': 2,                   # 控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。
    'subsample': 0.7,              # 随机采样训练样本
    'colsample_bytree': 0.7,       # 生成树时进行的列采样
    'min_child_weight': 3,
    'silent': 1,                   # 设置成1则没有运行信息输出,最好是设置为0.
    'eta': 0.007,                  # 如同学习率
    'seed': 1000,
    'nthread': 4,                  # cpu 线程数
}
  • booster 默认是gbtree ,gblinear
  • slient 0是打印运行时的信息,1代表缄默方式运行
  • nthread 运行的线程数
  • num_pbuffer 缓存区的大小,训练实例的数目,不需要人为进行设置
  • num_feature 特征的个数,自动进行设置

##############################################################################

  • eta 防止过拟合的更新步长 0.3
  • gamma 默认为0
  • max_depth 6 树的最大深度
  • min_child_weight 默认是1 ,孩子节点中最小样本的权重之和,小于该值,拆分结束
  • max_delta_step 0 每个数的权重被估计的值。通常设置为0,没有约束。正数,跟新的过程更加保守,Lr中。样本不均衡,可以设置为大于0的数
  • subsample 【depault=1】 训练模型的子样本占整个样本集合的比例。防止过采样
  • colsample_btree 1 特征的采样比例

#################################################################################

  • lambda 正则化l2的惩罚系数
  • alpha l1正则化的惩罚系数
  • lambda_bias 在偏智上的L2正则

#################################################################################

  • objective [ default=reg:linear ]
    定义学习任务及相应的学习目标,可选的目标函数如下:
    • “reg:linear” —— 线性回归。
    • “reg:logistic”—— 逻辑回归。
    • “binary:logistic”—— 二分类的逻辑回归问题,输出为概率。
    • “binary:logitraw”—— 二分类的逻辑回归问题,输出的结果为wTx。
    • “count:poisson”—— 计数问题的poisson回归,输出结果为poisson分布。在poisson回归中,max_delta_step的缺省值为0.7。(used to safeguard optimization)
    • “multi:softmax” –让XGBoost采用softmax目标函数处理多分类问题,同时需要设置参数num_class(类别个数)
    • “multi:softprob” –和softmax一样,但是输出的是ndata * nclass的向量,可以将该向量reshape成ndata行nclass列的矩阵。没行数据表示样本所属于每个类别的概率。
    • “rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss
  • base_score [ default=0.5 ]
    • 所有实例的初始化预测分数,全局偏置;
    • 为了足够的迭代次数,改变这个值将不会有太大的影响。
  • eval_metric [ default according to objective ]
    • 校验数据所需要的评价指标,不同的目标函数将会有缺省的评价指标(rmse for regression, and error for classification, mean average precision for ranking)-
    • 用户可以添加多种评价指标,对于Python用户要以list传递参数对给程序,而不是map参数list参数不会覆盖’eval_metric’
    • 可供的选择如下:
      • “rmse”: root mean square error
      • “logloss”: negative log-likelihood
      • “error”: Binary classification error rate. It is calculated as #(wrong cases)/#(all cases). For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as positive instances, and the others as negative instances.
      • “merror”: Multiclass classification error rate. It is calculated as #(wrongcases)#(allcases).
      • “mlogloss”: Multiclass logloss
      • “auc”: Area under the curve for ranking evaluation.
      • “ndcg”:Normalized Discounted Cumulative Gain
      • “map”:Mean average precision
      • “ndcg@n”,”map@n”: n can be assigned as an integer to cut off the top positions in the lists for evaluation.
      • “ndcg-“,”map-“,”ndcg@n-“,”map@n-“: In XGBoost, NDCG and MAP will evaluate the score of a list without any positive samples as 1. By adding “-” in the evaluation metric XGBoost will evaluate these score as 0 to be consistent under some conditions. training repeatively
  • seed [ default=0 ]
    • 随机数的种子。缺省值为0
章华燕:史上最详细的XGBoost实战​zhuanlan.zhihu.com
b750af6745a6cad361ec9142c59324c9.png

参数调整

确定boosting参数,预先设定其他参数的初始值

max_depth = 5
min_child_weight = 1
gamma = 0
subsample,colsample_bytree = 0.8
scale_pos_weight = 1
cv 确定 n_estimators

网格搜索确定max_depth 和min_child_weight

确定gamma参数的调优

调整subsample和colsample_bytree 的参数

正则化参数的调优

降低学习速率

Dukey:【转】XGBoost参数调优完全指南(附Python代码)​zhuanlan.zhihu.com
e680b0542fe61a88b551485d60621096.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值