Python 机器学习简单实例:KNN预测鸢尾花分类

读研太忙了才发现一年没更新,就以当初学习机器学习的一个简单例子作为一个新的开始吧。以下为正文。

一、安装sklearn库

执行以下命令安装, 注意:在此之前需要提前安装numpy、matplotlib、scipy库

pip install scikit-learn

如果速度较慢可更换国内镜像源,例如清华镜像源

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

二、实例代码

1、引入所需模块

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier

2、读入数据

x_data = load_iris().data # 特征值
y_data = load_iris().target # 目标值

x_data代表每个样本有4个特征值,对应[花萼长],[花萼宽],[花瓣长],[花瓣宽]。

 y_data代表每个样本对应的目标值,共有3个类别。

3、划分数据集

x_train, x_test, y_train, y_test = train_test_split(
    x_data, y_data, test_size=0.2, random_state=10)

按照测试集占总样本数20%的比例划分训练集和测试集

4、特征标准化

scaler = StandardScaler()
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)

5、训练KNN模型

estimator = KNeighborsClassifier(n_neighbors=5) # 构建KNN模型
estimator.fit(x_train, y_train) # 训练模型

对于每个样本来说,取最邻近的5个样本作为当前样本分类的划分依据

6、模型评估

y_pre = estimator.predict(x_test) # 预测值
score = estimator.score(x_test, y_test) # 准确率
print("实际结果为:\n", y_test)
print("预测结果为:\n", y_pre)
print("对比结果为:\n", y_pre == y_test)
print("准确率为:\n", score)

运行结果为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值