遗传算法(GA)——Matlab代码

本文介绍了如何在Matlab中实现遗传算法,包括基本概念、步骤及代码示例,帮助读者深入理解遗传算法并掌握其在Matlab环境下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

clear
clc
close all
f = @(x) x.*sin(x); % 函数表达式
figure(1)
ezplot(f, [0, 20]) % 画出函数图像
N = 50; % 种群上限
ger = 50; % 迭代次数
L = 5; % 基因长度
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
dco = [10000; 1000; 100; 10 ;1]; % 解码器
dna = randi([0, 9], [N, L]); % 基因
hold on
x = dna * dco / 99999 * 20; % 对初始种群解码
plot(x, f(x),'ko','linewidth',3) % 画出初始解的位置
x1 = zeros(N, L); % 初始化子代基因
x2 = x1; % 同上
x3 = x1; % 同上
fi = zeros(N, 1); % 初始化适应度
record = zeros(2,ger);
for epoch = 1: ger % 进化代数为100
    for i = 1: N % 交叉操作
        if rand < pc
            d = randi(N); % 确定另一个交叉的个体
            m = dna(d,:); % 确定另一个交叉的个体
            d = randi(L-1); % 确定交叉断点
            x1(i,:) = [dna(i,1:d), m(d+1:L)]; % 新个体 1
            x2(i,:) = [m(1:d), dna(i,d+1:L)]; % 新个体 2
        end
    end
    x3 = dna;
    for i = 1: N % 变异操作
        if rand < pm
            x3(i,randi(L)) = randi([0, 9]);
   
### 遗传算法与随机森林结合的Matlab实现 在处理复杂数据集时,遗传算法可以用于优化特征选择或参数调整,而随机森林则作为分类器来评估这些特征子集的效果。下面是一个简单的例子,在此示例中,遗传算法被用来挑选最佳特征组合以提高随机森林模型的表现。 #### 初始化环境设置 首先加载必要的工具箱并准备训练数据: ```matlab % 加载统计和机器学习工具箱以及全局优化工具箱 addpath('toolbox/stats/'); % 假设路径下有安装好的工具包 rng(1); % 设置随机种子以便重复实验结果 % 创建模拟数据集 X = randn(100, 20); % 生成具有100个样本点和20维特征的数据矩阵 Y = randsample([true false], 100, true); % 对应标签向量 ``` #### 定义适应度函数 为了使遗传算法能够工作,需要定义一个衡量个体好坏的标准——即适应度函数。这里采用交叉验证下的平均精度得分作为评价标准: ```matlab function score = fitnessFunction(genes) global X Y selectedFeaturesIdx = find(genes == 1); if isempty(selectedFeaturesIdx) score = -Inf; return; end model = TreeBagger(50, X(:,selectedFeaturesIdx), Y,'Method','classification'); cvModel = crossval(model,'KFold',5); [~,score] = kfoldLoss(cvModel,'Mode','individual'); end ``` #### 执行遗传算法搜索过程 利用`ga()`函数执行基于二进制编码方案的选择操作;其中染色体长度等于输入变量的数量,并且每一位代表是否选取对应位置上的属性参与建模: ```matlab numVars = size(X, 2); options = optimoptions(@ga,... 'PopulationSize',50,... 'MaxGenerations',100,... ); [x,fval] = ga(@(genes)fitnessFunction(genes),... numVars,[],[],[],[],zeros(numVars,1),ones(numVars,1),[],options); disp(['Optimal feature subset found with accuracy: ', num2str(-fval)]); ``` 上述代码片段展示了如何通过遗传算法找到一组最优特征集合,进而构建性能更优的随机森林预测模型[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值