神经网络与深度学习笔记系列一共有五个专题,分别是
第一章使用神经网络进行手写数字识别——梯度下降算法是什么主要介绍了神经网络的基础例如感知器激活函数等概念,最主要介绍了梯度下降算法。
第二章反向传播算法如何工作——反向传播算法的原理主要介绍了反向传播算法的工作原理。
第三章改变神经网络的学习方法——代价函数,规范化,过拟合。主要介绍了不同的代价函数,以及规范化等对传统代价函数的改造。
第四章深度神经网络为何难以训练——梯度消失和爆炸。主要介绍了梯度消失问题和梯度爆炸问题。
第二章反向传播算法如何工作
反向传播算法实质上是一种计算梯度的快速算法。
2.1神经网络中的矩阵计算
我们首先规定一下网络中权重w和偏置b的表示方法。
表示从
层的第k个神经元到第
层第j个神经元的权重。同样,用
表示第
第j个神经元的偏执,用
表示第
层的第j个神经元的激活函数值。如下图所示。
权重的表示:

偏置和激活值的表示:

那么,我们计算第

本文详细解析神经网络中的反向传播算法,包括矩阵计算、代价函数假设、Hadamard乘积以及反向传播的四个基本方程,阐述了误差反向传播计算权重和偏置的偏导数的过程,揭示了权重学习速度受输入神经元激活值和输出神经元饱和度影响的原理。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



