排序效率在同为O(N*logN)的几种排序方法中效率较高
思想: 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
平均时间复杂度: nlog2n ,空间复杂度: log2n,不稳定
public class QuickSort {
/**
* 快速排序
* @param arr:数组名
* @param leftbound:数组的起始下标
* @param rightbound:数组的结束下标
*/
public void sort(int[] arr, int leftbound, int rightbound) {
if (leftbound >= rightbound) return;
int mid=partition(arr,leftbound,rightbound); //轴的位置
sort(arr,leftbound,mid-1); //对轴前面的数进行快排
sort(arr,mid+1,rightbound); //对轴后面的数进行快排
}
/**
* 将数与轴的位置的数进行大小比较,小的数在轴的前面,大的数在轴的后面
* 左、右指针分别往中间收缩,与轴比较大小,小的放左边,大的放右边
* @param arr:数组名
* @param leftBound:数组的起始下标
* @param rightBound:数组的结束下标
* @return:返回轴的位置
*/
public int partition(int[] arr,int leftBound,int rightBound){
int left=leftBound; //数组的左边界
int right=rightBound-1; //轴的前面一个数
int pivot=arr[rightBound]; //轴(最右边的数)
while (left<=right){ //如果左指针没有越过右指针
while (left<=right && arr[left]<=pivot) left++; //若小于轴,左指针往后移;循环结束后,left指针刚好指到大于轴的数的位置
while (left<=right && arr[right]>=pivot) right--; //若大于轴,右指针往前移;循环结束后,right指针刚好指到小于轴的数的位置
if (left<right){ //交换left与right指针对应的数
int temp=arr[left];
arr[left]=arr[right];
arr[right]=temp;
}
}
int temp=arr[left]; //将轴位置上的数插入到正确的位置
arr[left]=arr[rightBound];
arr[rightBound]=temp;
return left;
}
}
主方法:
public static void main(String[] args) {
int[] arr={4345,245,768,4,342,23,568,923,65};
QuickSort quickSort=new QuickSort();
quickSort.sort(arr,0,arr.length-1);
for (int i=0;i<arr.length;i++){
System.out.print(arr[i]+" ");
}
}
输出结果:
4 23 65 245 342 568 768 923 4345