机器学习基础
基于tensorflow2.5机器学习之路
不要慌再学一次
这个作者很懒,什么都没留下…
展开
-
np.mgrid x.ravel np.c_[]
np.mgrid[起始值:结束值:步长,起始值:结束值:步长]x.ravel() 将x变为一维数组,即将x拉直np.c_[]将返回的间隔数值点配对np.c_[数组1,数组2, …]import numpy as npx, y = np.mgrid[1:3:1, 2:4:0.5]grid = np.c_[x.ravel(), y.ravel()]print("x:", x)print("y:", y)print("grid:", grid)运行结果:补充:x代表有2行,y代表有4列原创 2021-07-30 11:07:47 · 591 阅读 · 0 评论 -
tensorflow基础学习 02 张量基础:创建一个tensor
张量(Tensor):多维数组(列表) 阶:张量的维度张量可以表示0阶到n阶数组(列表)数据类型:tf.int, tf.float…tf.int 32 , tf.float 32, tf.float 64tf.booltf.constant([True,False])tf.stringtf.constant(“Hello,world!”)如何创建一个Tensortf.constant(张量内容,dtype=数据类型(可选))import tensorflow as tfa原创 2021-07-28 11:22:08 · 407 阅读 · 0 评论 -
机器学习基础 损失函数 梯度下降 概念学习
损失函数:预测值(y)与标准答案(y-)的差距损失函数可以定量判断权重w和随机初始化b的优劣,当损失函数输出最小时,w、b最优常见损失函数:均方误差原创 2021-07-26 10:35:28 · 693 阅读 · 0 评论 -
tensorflow基础学习 01 使用Anaconda环境 安装tensorflow
1、tensorflow安装pip install tensorflow2、打开anaconda promptconda creat -n TF2.1 python=3.7 #新建一个python3.7版本的名为TF2.1的环境conda activate TF2.1pip install tensorflow #在自己创建的环境下安装tensorflow3、验证是否安装成功TF2.1环境下打开python 输入 import tensorflow as tftensorflow v原创 2021-07-24 11:39:57 · 156 阅读 · 2 评论