- 博客(9)
- 收藏
- 关注
原创 MLP、CNN在MNIST数据集上性能对比
对MLP、简单CNN和多层CNN区别做简单性能对比MLP(需将图片宽高数据转换成一维数据形式)from keras.datasets import mnistfrom matplotlib import pyplot as pltimport numpy as npfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.utils import np_utils# 从Keras导入Mni
2022-03-18 17:28:31 1608
原创 Dropout与学习率衰减
模型出现过拟合,可采取Dropout的方式进行效率解决(仅针对神经网络模型的正则化方法)。该方法主要是在训练模型的过程中,随机抛弃一些神经元,使其不参与正向和反向传播过程。神经网络在训练过程中,权重对于某些特征的依赖关系较强,每次训练都随机抛下一些特征(对于非输入层则是神经元),将会强迫每一个神经元和随机挑选出来的其他神经元共同工作,据此网络模型对于神经元的特定权重不那么敏感,由此提高了模型整体泛化能力。from sklearn import datasetsimport numpy as npf
2022-03-17 10:00:06 2805
原创 序列化神经网络模型(全数据更新、增量更新、检查点、训练历史可视化)
由于神经网络训练需要较长时间,自动保存当前最优模型,使得整个训练过程可视化尤为重要。因此可使用Keras对模型进行序列化,即将模型结果和权重分别保存在json文件和HDF5文件中from sklearn import datasetsimport numpy as npfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.utils import to_categoricalfrom keras
2022-03-16 20:41:49 1362
原创 KerasClassifier与KerasRegressior简单使用(利用iris数据集与Boston数据集)
以下代码使用KerasClassifier构建简单神经网络,对iris多分类问题进行训练,最后加入10折交叉验证,对模型准确率和方差进行计算。from sklearn import datasetsimport numpy as npfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.wrappers.scikit_learn import KerasClassifierfrom skle..
2022-03-16 17:07:19 7235 2
原创 在keras中使用scikit-learn
keras类库为深度学习模型提供了一个包装类(Wrapper),将Keras的深度学习模型包装成scikit-learn中的分类或回归模型,以便方便的使用scikit-learn中的方法和函数,对深度学习的模型是通过KerasClassifier和KerasRegressor来实现的。...
2022-03-16 14:09:56 3190
原创 多层感知机训练pima_indians_diabetes
导入库包from keras.models import Sequentialfrom keras.layers import Denseimport numpy as npimport pandas as pd# 设定随机数种子,使得模型参数初始化结果相同np.random.seed(7)导入数据,并将其转换为keras指定数据类型# 导入数据dataset = pd.read_csv('XXXX/diabetes.csv')#print(dataset)# 分割输入
2022-03-16 11:51:31 1859
原创 P-R曲线绘制(多分类问题)
以iris数据为样本实现P-R曲线的绘制import matplotlib.pyplot as pltimport numpy as npfrom sklearn import svm, datasetsfrom sklearn.metrics import precision_recall_curve, average_precision_scorefrom sklearn.model_selection import train_test_splitfrom sklearn.prepro
2022-03-15 20:08:04 3386
原创 sklearn文档向量化(CountVectorizer、stopwords和ngram的简单举例)
from sklearn.feature_extraction.text import CountVectorizercorpus=['Job was the charirman of Apple Inc., and he was very famous', 'I like to use apple computer', 'And I also like to eat apple']如上图,希望对列表中的三句话进行向量化处理vectorizer = CountVe.
2022-03-15 19:50:18 2285
原创 使用Sklearn进行线性回归和二次回归的比较(基于jupyter)
以简单的披萨直径与价格的线性回归方程和二次回归方程举例,利用sklearn进行拟合与可视化处理。其中涉及到利用PolynomialFeatures的方法将给定一维数据集转换为多项式形式。import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import LinearRegressionfrom sklearn.preprocessing import PolynomialFeatures...
2022-03-15 16:16:07 2342
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人