🌻算法,不如说它是一种思考方式🍀
算法专栏: 👉🏻123
题解目录
一、🌱面试题 02.07. 链表相交
-
题目描述:给你两个单链表的头节点
headA
和headB
,请你找出并返回两个单链表相交的起始节点
。如果两个链表没有交点,返回null
。
图示两个链表在节点 c1 开始相交:
题目数据 保证 整个链式结构中不存在环。
注意,函数返回结果后,链表必须 保持其原始结构 。 -
来源:力扣(LeetCode)
-
难度:简单
-
提示:
listA 中节点数目为 m
listB 中节点数目为 n
0 <= m, n <= 3 * 104
1 <= Node.val <= 105
0 <= skipA <= m
0 <= skipB <= n
如果 listA 和 listB 没有交点,intersectVal
为 0
如果 listA 和 listB 有交点,intersectVal == listA[skipA + 1] == listB[skipB + 1]
-
示例 1:
输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at ‘8’
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
🌴解题
1. 计算长度差
链表相交,指的是两个链表后面一段是公共的,因此我们可以计算两个链表长度,以尾部对齐的方式从同一个位置开始遍历,看节点是不是相同的(不是值相等,NodeA==NodeB
)。
就是计算两个链表长度之差 N,让长链表先走 N 步~
然后两个链表同步遍历。
- code:
public class Solution {
public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
ListNode pointA = headA,pointB = headB;
int lengthA=getListLength(headA);
int lengthB=getListLength(headB);
int diffn=0;
if(lengthA>lengthB){
diffn=lengthA-lengthB;
while (diffn>0){
pointA=pointA.next;
diffn--;
}
}
if(lengthA<lengthB){
diffn=lengthB-lengthA;
while (diffn>0){
pointB=pointB.next;
diffn--;
}
}
while (pointA!=pointB){
pointA=pointA.next;
pointB=pointB.next;
}
return pointA;
}
private int getListLength(ListNode headA) {
int len=0;
while(headA!=null){
len++;
headA=headA.next;
}
return len;
}
}
2. 双栈
同样考虑到栈先进后出的性质,准备两个栈来存两个链表节点,依次出栈对比~
注意 ListA.peek()==ListB.peek()
的栈空相等的情况。
- code:
public class Solution {
public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
if(headA==null||headB==null)
return null;
Deque<ListNode> ListA=new LinkedList<>();
Deque<ListNode> ListB=new LinkedList<>();
ListNode ans=null;
while (headA!=null){
ListA.push(headA);
headA=headA.next;
}
while (headB!=null){
ListB.push(headB);
headB=headB.next;
}
while (ListA.peek()==ListB.peek()){
ans=ListA.pop();//保存最后一个相等的节点,交点
ListB.pop();
if(ListA.isEmpty()||ListB.isEmpty())
break;
}
return ans;
}
}
☕物有本末,事有终始,知所先后。🍭
🍎☝☝☝☝☝我的CSDN☝☝☝☝☝☝🍓