模式识别学习笔记

一些基本概念

数学概念

  1. 类条件概率密度:已知目标的类别(事件发生)为 ω k \omega_k ωk的情况下,目标的某一特征(促成事件的条件,另一个事件) x x x的概率密度 P ( x ∣ ω k ) P(x|\omega_k) P(xωk)
  2. 先验概率:所有条件未知的情况下,事件发生的概率。

最小风险贝叶斯决策
例:假设观测到现象(事件) x x x后查出某细胞是肿瘤细胞(事件 ω 2 \omega_2 ω2)的后验概率 P ( ω 2 ∣ x ) P(\omega_2|x) P(ω2x)为0.818,反之 P ( ω 1 ∣ x ) P(\omega_1|x) P(ω1x)为0.182。

决策\实际结果 ω 1 \omega_1 ω1 ω 2 \omega_2 ω2
a 1 a_1 a1 λ ( a 1 , ω 1 ) = 0 \lambda(a_1, \omega_1) = 0 λ(a1,ω1)=0 λ ( a 1 , ω 2 ) = 6 \lambda(a_1, \omega_2) = 6 λ(a1,ω2)=6
a 2 a_2 a2 λ ( a 2 , ω 1 ) = 1 \lambda(a_2, \omega_1) = 1 λ(a2,ω1)=1 λ ( a 2 , ω 2 ) = 0 \lambda(a_2, \omega_2) = 0 λ(a2,ω2)=0

设将结果判定为 ω 2 \omega_2 ω2的决策表示为 a 2 a_2 a2,反之为 a 1 a_1 a1,则 ω 1 \omega_1 ω1错判为 a 2 a_2 a2的风险为 1 ∗ 0.818 1*0.818 10.818 ω 2 \omega_2 ω2错判为 a 1 a_1 a1的风险为 6 ∗ 0.182 6*0.182 60.182,按风险最小的原则,应当选择决策 a 2 a_2 a2

切比雪夫不等式
P { ∣ X − μ ∣ ≥ ε } ≤ σ 2 ε 2 P\{|X-\mu|\geq\varepsilon\}\leq \frac{\sigma^2}{\varepsilon^2} P{Xμε}ε2σ2
切比雪夫不等式给出了在随机变量的分布未知,只知道 E ( X ) E(X) E(X) D ( X ) D(X) D(X)的情况下的估计概率 P { ∣ X − μ ∣ &lt; ε } P\{|X-\mu|&lt;\varepsilon\} P{Xμ<ε}的界限。

中心极限定理

参数分布(parametric distribution)
少量可调节的参数控制了整个该概率分布

适定问题是指定解满足下面三个要求的问题:① 解是存在的;② 解是唯一的;③ 解连续依赖于定解条件,即解是稳定的。这三个要求中,只要有一个不满足,则称之为不适定问题。

线性回归问题中的正则化
如果参数对应一个较小的值,那么会得到形式更加简单的假设。惩罚高阶参数,使它们趋近于0,这样就会得到较为简单的假设,也就是得到简单的函数,这样就不易发生过拟合。但是在实际问题中,并不知道哪些是高阶多项式的项,所以在代价函数中增加一个惩罚项/正则化项,将代价函数中所有参数值。
对于方差形式的损失函数:
E ( w ) = 1 2 ∑ n = 1 N [ y ( x n , w ) − t ] 2 + λ 2 ∣ ∣ w ( k ) ∣ ∣ 2 E(w) = \frac {1}{2} \sum _{n = 1}^{N} [y(x_n,w)-t]^2 + \frac {\lambda}{2} ||w_{(k)}||^2 E(w)=21n=1N[y(xn,w)t]2+2λw(k)2
通过对其求导来求局部最小值,当 λ \lambda λ越大对 w ( k ) w_{(k)} w(k)的抑制作用就越大。

Gamma函数
Γ ( x ) = ∫ 0 ∞ u x − 1 e − u d u \Gamma(x) = \int_0^{\infty} u^{x-1}e^{-u}du Γ(x)=0ux1eudu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值