TiDE时间序列模型预测(Long-term Forecasting with TiDE: Time-series Dense Encoder)

时间序列预测,广泛用于能源、金融、交通等诸多行业,传统的统计模型,例如ARIMA、GARCH等因其简单高效而被广泛使用,近年来,随着深度学习的兴起,基于神经网络的预测模型也备受关注,表现出强大的预测能力。

ARIMA(自回归积分滑动平均模型 Autoregressive integrated moving average model)特别适用于显示出明显线性趋势或季节性模式的数据序列。

结合了自回归(AR)、差分(I)和移动平均(MA)三个部分,主要用于分析和预测具有时间依赖的数据序列。

1、自回归:表明当前的时间序列值可以表示为前一期或多期的函数,即时间序列的当前值与其过去值之间存在线性关系。

2、差分:是为了使非平稳时间序列变为平稳序列的处理方法,通过对原始数据进行一次或多次差分,消除数据的季节性和趋势性,从而稳定序列的方差和均值。

3、移动平均:涉及将模型的误差项表达为观测点的线性组合,可以帮助模型更好地适应时间序列中的随机波动。

GARCH(广义自回归条件异方差模型 Generalized Autoergressive Conditional Heteroskedasticity Model)

一种用于分析时间序列数据中波动性的模型,特别是在金融时间序列中,该模型能够捕捉到时间序列的波动性的自回归和条件异方差性,从而更好地描述和预测金融资产的波动率。

协变量

协变量是指与时间序列值相关联的其他变量,它们可以提供额外的信息,帮助模型更好地进行预测。协变量可以分为两类:

1、静态协变量:这些协变量不随时间变化

例如:产品特征:零售数据中的产品类别、品牌、价格等

           地理特征:交通数据中道路类型、天气数据中的城市名称等

           其他:零售数据中的商店ID、交通数据中的路线ID等

2、动态协变量:这些协变量随时间变化

例如:天气数据中的温度、湿度、风速等

           交通数据中的交通流量、事故信息等

           零售数据中的促销信息、叫假日信息等

transformer模型因其出色的捕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值