时间序列预测,广泛用于能源、金融、交通等诸多行业,传统的统计模型,例如ARIMA、GARCH等因其简单高效而被广泛使用,近年来,随着深度学习的兴起,基于神经网络的预测模型也备受关注,表现出强大的预测能力。
ARIMA(自回归积分滑动平均模型 Autoregressive integrated moving average model)特别适用于显示出明显线性趋势或季节性模式的数据序列。
结合了自回归(AR)、差分(I)和移动平均(MA)三个部分,主要用于分析和预测具有时间依赖的数据序列。
1、自回归:表明当前的时间序列值可以表示为前一期或多期的函数,即时间序列的当前值与其过去值之间存在线性关系。
2、差分:是为了使非平稳时间序列变为平稳序列的处理方法,通过对原始数据进行一次或多次差分,消除数据的季节性和趋势性,从而稳定序列的方差和均值。
3、移动平均:涉及将模型的误差项表达为观测点的线性组合,可以帮助模型更好地适应时间序列中的随机波动。
GARCH(广义自回归条件异方差模型 Generalized Autoergressive Conditional Heteroskedasticity Model)
一种用于分析时间序列数据中波动性的模型,特别是在金融时间序列中,该模型能够捕捉到时间序列的波动性的自回归和条件异方差性,从而更好地描述和预测金融资产的波动率。
协变量
协变量是指与时间序列值相关联的其他变量,它们可以提供额外的信息,帮助模型更好地进行预测。协变量可以分为两类:
1、静态协变量:这些协变量不随时间变化
例如:产品特征:零售数据中的产品类别、品牌、价格等
地理特征:交通数据中道路类型、天气数据中的城市名称等
其他:零售数据中的商店ID、交通数据中的路线ID等
2、动态协变量:这些协变量随时间变化
例如:天气数据中的温度、湿度、风速等
交通数据中的交通流量、事故信息等
零售数据中的促销信息、叫假日信息等
transformer模型因其出色的捕