19.1 快速幂 ——【RSA解密(2019 年省赛)】

本文介绍了RSA加密算法的基本原理,并通过一个实际例子展示了如何使用公钥和私钥进行加密和解密操作。解密过程中,利用给定的公钥参数和密文,成功计算出原文。此外,还探讨了如何寻找质因数以及快速幂运算在加密解密中的应用。
摘要由CSDN通过智能技术生成

题目描述

RSA是一种经典的加密算法。它的基本加密过程如下。

首先生成两个质数p,q,令n =p·q,设d与(p-1)·(q-1)互质,则可找到e使得d·e除(p-1)·(q-1)的余数为1。

n,d,e组成了私钥,n,d组成了公钥。

当使用公钥加密一个整数 X 时(小于 n),计算 C = Xd mod n,则 C 是加密后的密文。

当收到密文 C 时,可使用私钥解开,计算公式为 X = Cemod n。

例如,当p=5,q= 11,d= 3时,n = 55,e = 27。

若加密数字 24,得 243 mod 55 = 19。 解密数字 19,得 1927mod 55=24。

现在你知道公钥中n= 1001733993063167141,d = 212353,同时你截获了别人发送的密文C= 20190324,请问,原文是多少?


解题步骤

在这里插入图片描述

//大概10秒
#include<bits/stdc++.h>
#define ll long long
using namespace std;

int main(){
    ll n = 1001733993063167141;
    ll k= sqrt(n);
    for(ll i = 2 ; i < k; i++)
        if(n % i == 0)
            cout << i << " " << n / i << endl;
    return 0;
}

在这里插入图片描述

n = 1001733993063167141
d = 212353
p=891234941
q=1123984201
tmp = (p - 1) * (q - 1)
print(tmp)
for i in range(2,n+1):
    now = i * tmp + 1
    if (now % d == 0):
           print(now // d)   #打印e
           break             #有很多e,求第一个就行了

在这里插入图片描述

def fastPow(a,b,mod):
    ret = 1
    while b:
        if(b&1):
             ret = ret*a % mod
        a = a*a % mod
        b>>=1
    return ret
 
n = 1001733993063167141
e = 823816093931522017   #试试其他的e
C = 20190324
print(fastPow(C,e,n))        #579706994112328949
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你说的白是什么白_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值