无监督学习和监督学习的区别

本文详细介绍了无监督学习和监督学习的区别。无监督学习主要用于发现数据中的模式,如k-means聚类算法。而监督学习是通过带有标签的训练数据来预测输出,如knn、贝叶斯算法等。两者关键区别在于是否需要训练集,监督学习依赖带标签的训练样本,无监督学习则仅分析数据集。在实际应用中,根据是否有训练样本和样本分布情况选择合适的学习方法。
摘要由CSDN通过智能技术生成

1、什么是无监督学习?


        无监督学习是机器学习技术中的一类,用于发现数据 中的模式。利用 学习数据的分布或数据与数 据之间的关系被称作无监督学习。

2、无监督学习代表算法:


        1、k-means算法(聚类算法)

3、什么是监督学习?


        监督学习描述的任务是:当给定输入x,如何通过在有标注输入和输出的数据上训练模型而能够预测输出y

        1、通过带有标签的训练集:训练模型

        2、通过训练模型,输入新事件自变量x,预测输出y

 4、监督学习代表算法:


        1、knn(k最近邻算法)属于分类方法。

        2、贝叶斯算法、朴素贝叶斯算法,属于分类方法。

        3、逻辑回归,属于回归方法。

        4、线性回归,属于回归方法。

 5、无监督学习vs监督学习。


       1.监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对 测试样本使用这种规律。而非监督学习没有训练集,只有一组数据,在该 组数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值