concatenate python_python中numpy.concatenate()函数怎么用?

6782a3fc49163e236198fef0a92c7996.png

在python的numpy库数据处理中合并的方法有很多,但是想要合并的效率高,且适合大规模数据拼接,能够一次完成多个数组的拼接的只有numpy.concatenate()函数,在合并数组上会比append()更方便,且更有效率。本文介绍python中numpy.concatenate()函数使用方法。

1、numpy.concatenate函数

主要作用:沿现有的某个轴对一系列数组进行拼接。

2、使用语法numpy.concatenate((a1, a2, ...), axis=0, out=None)

3、使用参数

将具有相同结构的array序列结合成一个array

a1,a2,...是数组类型的参数,传入的数组必须具有相同的形状。

axis 指定拼接的方向,默认axis = 0(逐行拼接)(纵向的拼接沿着axis= 1方向)。

axis=0,拼接方向为横轴,需要纵轴结构相同,拼接方向可以理解为拼接完成后数量发生变化的方向。

注:一般axis = 0,就是对该轴向的数组进行操作,操作方向是另外一个轴,即axis=1。

4、使用实例import numpy as np

x = [[1, 2],

[3, 4]]

x1 = np.concatenate([x, x], axis=0)

print("x1 axis=0")

print(x1)

x2 = np.concatenate([x, x], axis=1)

print("x2 axis=1")

print(x2)

输出x1 axis=0

[[1 2]

[3 4]

[1 2]

[3 4]]

x2 axis=1

[[1 2 1 2]

[3 4 3 4]]

以上就是python中numpy.concatenate()函数使用方法介绍,需要注意参数一般axis = 0,就是对该轴向的数组进行操作,操作方向是另外一个轴,即axis=1。

Python中,np.concatenate()函数NumPy库中的一个函数,用于连接(或拼接)多个数组。它的调用方法是numpy.concatenate((a1, a2, ...), axis=0, out=None),其中a1, a2, ...表示要连接的多个数组,axis表示连接的方向,默认为0,即按行连接,out表示指定输出数组的可选参数。 举个例子来说明,假设有两个数组a和b,它们分别是: a = np.array([[1, 2], [3, 4]]) b = np.array([[5, 6]]) 如果我们想要将数组a和数组b按行连接起来,可以使用np.concatenate()函数来实现,代码如下: c = np.concatenate((a, b), axis=0) print(c) 运行上述代码,输出结果为: [[1 2] [3 4] [5 6]] 可以看到,数组a和数组b被按行连接起来形成了一个新的数组c。 需要注意的是,np.concatenate()函数也可以用于连接多个数组,只需要将要连接的数组作为参数传递给函数即可。此外,还可以通过指定axis参数来控制连接的方向,axis=0表示按行连接,axis=1表示按列连接。 值得一提的是,在Python中,除了np.concatenate()函数,还可以使用np.append()函数和pandas库中的连接方法来实现数组的连接操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【Pythonconcatenate、merge、concat、join等多种连接函数的用法详解(含Python代码)](https://blog.csdn.net/wzk4869/article/details/127082443)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [np.concatenate()函数](https://blog.csdn.net/u011699626/article/details/109095989)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [Python数组拼接np.concatenate实现过程](https://download.csdn.net/download/weixin_38693311/14850802)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值