np.concatenate()详细用法

np.concatenate() 是 NumPy 库中用于连接数组的函数,可将多个数组沿指定轴连接成一个数组。以下是其详细用法:

基本语法

numpy.concatenate((a1, a2, ...), axis=0, out=None)

  • 参数

    • a1, a2, ...:需要连接的数组,这些数组的维度必须一致。

    • axis:沿哪个轴连接数组,默认为 0,表示沿第一个轴连接。

    • out:可选参数,指定输出数组的存放位置。

使用示例

一维数组拼接

Python复制

import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
result = np.concatenate((a, b))
print(result)  # 输出:[1 2 3 4 5 6]

二维数组拼接

Python复制

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])

# 按行拼接(axis=0)
result_row = np.concatenate((a, b), axis=0)
print(result_row)
# 输出:
# [[1 2]
#  [3 4]
#  [5 6]
#  [7 8]]

# 按列拼接(axis=1)
result_col = np.concatenate((a, b), axis=1)
print(result_col)
# 输出:
# [[1 2 5 6]
#  [3 4 7 8]]

多维数组拼接

Python复制

a = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
b = np.array([[[9, 10], [11, 12]], [[13, 14], [15, 16]]])

# 按第一个轴拼接
result_axis0 = np.concatenate((a, b), axis=0)
print(result_axis0.shape)  # 输出:(4, 2, 2)

# 按第二个轴拼接
result_axis1 = np.concatenate((a, b), axis=1)
print(result_axis1.shape)  # 输出:(2, 4, 2)

# 按第三个轴拼接
result_axis2 = np.concatenate((a, b), axis=2)
print(result_axis2.shape)  # 输出:(2, 2, 4)

注意事项

  • 维度一致性:连接的数组在除了连接轴之外的其他维度上必须具有相同的大小,否则会报错。

  • 参数灵活性:除了用元组形式传入多个数组外,还可以用列表形式传入。

  • 高维数组处理:对于高维数组,需根据具体需求选择合适的轴进行连接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HXQ_晴天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值