2697v3只支持服务器内存,Intel发布至强E5-2600 v3处理器:18核36线程,支持DDR4内存...

桌面版8核Haswell-E处理器发布之后,Intel也在今天开幕的秋季IDF会议上发布了Haswell-EP架构的至强E3-2600 v3系列处理器,相比前代v2家族最多12核心24线程,E5-2600 v3核心数量提高到了18核36线程,缓存容量也提升50%到45MB,支持DDR4-2133内存,最高容量也翻倍提升到1.5TB。

E5-2600_v3_9a.jpg

至强E3-2600 v3处理器规格

之前我们也多次报道过了Haswell-EP架构处理器的一些情况了,这是Intel针对双路服务器市场推出的服务器及工作站处理器,架构源于22nm Haswell,前不久发布的桌面级Core i7-5960X/5930K/5820K则是基于Haswell-E处理器的,最多8核心,而Haswell-EP突出多线程性能,最多18核心36线程。

spec.jpg

具体来说,至强E5-2600 v3系列拥有4-18个核心,TDP则是55-145W,工作站级的略高一些,达到了160W。它们使用Socket R3插槽,也就是LGA2011-3,支持四通道DDR4-2133MHz,1866/1333/1333下每通道支持2条内存,最高容量1.5TB,而DDR4-2133则只能支持每通道1条内存,容量还是768GB。

跟两代产品一样,至强E3-2600 v3也支持2条QPI总线,速度最高9.6GT/s。

vsv2.jpg与前代IVB-EP架构的至强E5-2600 v2相对比

die.jpgHaswell-EP处理器架构

由于这一代处理器的核心大幅增加到了18个,Intel将Haswell-EP分成三个级别:14-18个核心的为HCC系列,由4个阵列(包括核心及对应的LLC电路)和2组内存控制器组成,10-12核心的则是MCC系列,由3组阵列和2组内存控制器组成,4-8核的则是LCC系列,由2组阵列和1组内存控制器组成。

c610.jpg配套的C610芯片组,代号Wellsburg,其实就是消费级的X99,同样支持原生USB 3.0了

至强E5-2600 v3处理器价格

price.jpg

18核Haswell-EP处理器这样的毫物显然不会便宜,不过目前真正的18核至强E5-2699 v3以及16核的E5-2698 v3实际上还没有正式上市,价格未知,但是14核的E3-2697 v3都要2702美元(折合人民币16590元)了,18核的E3-2699 v3估计至少要上4000美元了(更新:ARK上有价格了,4115美元),之前曝光的某款18核处理器的ES版在ebay上都要卖到3.3万一颗了。

第二页是Intel官方的一些处理器核心及晶圆照,有兴趣的看看吧。

至强E5-2600 v3核心及晶圆照图赏

IMG0045530_1.jpg

E5-1600_v3_8.jpg

E5-2600_v3_1.jpg

E5-2600_v3_12.jpg

E5-2600_v3_package_shot1.jpg

E5-2600_v3_package_shot2.jpg

E5-2600_v3_package_shot3.jpg

E5-2600_v3_package_shot4.jpg

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值