xgboost和随机森林特征重要性计算方法

本文详细介绍了随机森林中特征重要性的计算方法,基于不纯度(Gini指数)的衡量标准,以及如何进行归一化处理。对于分类问题使用Gini不纯度,回归问题则采用MSE或MAE。通过分析,帮助读者理解随机森林与XGBoost在特征选择上的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机森林中特征重要性和xgboost不同:

随机森林中的特征重要性主要是基于不纯度(也可以叫做Gini importance):

计算某一个节点不纯度为
在这里插入图片描述
其中, ω k \omega_k ωk, ω l e f t \omega_{left} ωleft, ω r i g h t \omega_{right} ωright分别为节点 k以及其左右子节点中训练样本个数与总训练样本数目的比例, G k G_k Gk, G l e f t G_{left} Gleft, G r i g h t G_{right} Gright分为为节点 k 以及其左右子节点的不纯度。
节点不纯度计算完成后,计算某个Feature的不纯度为
在这里插入图片描述
另外,为了使所有feature的重要性加起来等于1,需要每一feature的重要性进行normalization:
在这里插入图片描述
对于分类问题的话,就是gini不纯度
对于回归问题的话,MSE(Mean Square error)或者MAE(Mean absolute error)

sklearn中的解释
sklearn源码

参考文章:
https://blog.csdn.net/gracejpw/article/details/102611273
https://zhuanlan.zhihu.com/p/52052903
https://mljar.com/blog/feature-importance-in-random-forest/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值