- 博客(98)
- 收藏
- 关注
原创 不同 QPS 场景下的服务部署架构指南(实战经验总结)
本文系统介绍了后端系统处理高并发请求的关键指标QPS及其应用实践。首先明确QPS的计算方法,区分QPS与并发量的概念差异,并给出行业通用的DAU与并发量映射关系。针对不同QPS量级,提供了详细的部署架构建议:从QPS≤100的单机简单部署,到QPS 5000+的全国级分布式架构,重点分析了500-2000QPS这一典型场景的优化策略。特别针对推荐系统这类IO密集型服务,给出了单机安全QPS参考值(4C机器200-400,8C机器400-800),并总结出"目标QPS÷单机安全QPS≈所需机器数量&
2025-12-11 11:17:19
850
原创 可灵图片生成通用使用指南
可以借助大模型直接来写(本人使用的是chagpt pro,其他没测试过),只需要告诉大模型大概,如果不满意,把生成图片和不满意的地方发给大模型,让大模型修改,很高效。例如我要把这棵树改成一颗小树,直接局部重绘你会发现还是一颗大树,但是删除再生成就可以。先用用消除笔去掉,然后再局部重绘要OK的多,直接局部重绘失败概率极高。还是PS之类的工具靠谱,推荐,AI自动帮忙抠,而且免费。用消除笔比局部重绘要OK的多。想生成背景为空的一个内容元素。
2025-12-05 14:30:09
264
原创 常用 Linux 命令大全(文件、网络、时间、进程、数据库、工具全覆盖)
本文整理了Linux系统操作中最常用的命令,涵盖文件处理、VIM操作、网络管理、系统监控等场景。主要包括:文件拆分/合并(split/cat)、压缩解压(tar/zip)、远程传输(scp/sftp)、批量查找替换(find/sed)、vim快捷键、定时任务(crontab)、网络工具(curl/iptables)、进程管理(lsof/kill)、磁盘检查(df)、Docker操作等。每个命令均附带实用示例和参数说明,特别适合作为日常工作的速查手册,能有效提升Linux环境下的操作效率。
2025-11-19 20:53:38
1858
原创 大模型 + 字形理解:Glyph-OCR 带来的 OCR 新范式
摘要:GlyPh-OCR提出了一种创新的字形识别方法,通过将字符视觉信息离散化为glyph tokens,使模型能真正"看懂"字形结构。其核心流程包括字符检测、切割、字形编码和语言模型推理三大模块,形成模块化OCR pipeline。相比传统OCR,GlyPh-OCR在模糊文字、异体字识别方面表现优异,特别适合古籍、低清图像等场景。虽然不具备文档级理解能力,但解决了字形识别的本源问题,与DeepSeek-OCR等端到端模型形成互补。该技术强调字形理解而非单纯文本推断,为OCR领域提供了新
2025-11-19 20:24:55
761
原创 DeepSeek-OCR:10倍光学压缩新范式
DeepSeek-OCR 提出了一种创新的视觉-文本压缩架构,通过第一性原理探索人类阅读本质,将图像作为输入实现"一目十行"的效果。其核心架构包含:1)DeepEncoder,由SAM-base(局部注意力)、16×Token Compressor(CNN压缩)和CLIP-Large(全局语义)组成,可将高分辨率文档压缩为64-800视觉tokens;2)DeepSeek-3B-MoE Decoder,通过自回归方式从压缩视觉tokens恢复文本、布局等结构化信息。该模型实现了10×压缩
2025-11-19 11:36:51
782
原创 特征交叉-XdeepFM&CIN
CIN 是一种基于 outer product 的显式高阶交互网络,通过卷积权重实现维度压缩,表达能力强于 DCN,可看作显式 Polynomial 交叉的升级版。它在工业界(广告、推荐)已有实际落地,与 FM、DeepFM、DCN 一起构成现代 CTR 模型的主干体系。2. tensorflow实现(论文git)3. torch实现4. 读了那么多CTR论文, 真正有效的又有几个呢?
2025-11-18 18:25:32
496
原创 一文说明推荐系统特征交叉方法
推荐系统排序模型的特征交叉方法主要分为非参数和参数式两类。非参数方法包括笛卡尔积、内积/外积和哈达玛积,其中内积最为常用。参数式方法包括FM(显式二阶交叉)、DNN(隐式高阶交叉)、DCN(显式多阶交叉)、Bilinear Cross(双线性交互)、CAN(动态参数交叉)、PNN(乘积交互)和CIN(显式高阶压缩交互)。此外,样本维度的特征交叉如MaskNet通过全局mask实现交互。这些方法在推荐系统中各有优劣,FM和DNN应用最广泛,而DCN、CIN等显式高阶交叉方法在特定场景效果显著。特征交叉技术的演
2025-11-18 18:16:41
751
原创 End-To-End之于推荐-快手OneRec系列三(OneRec-Think)
快手OneRec系列引入大语言模型推理能力,通过COT(Chain of Thought)技术提升推荐效果。该框架包含三个核心模块:Itemic Alignment使LLM理解Item语义;Reasoning Activation让模型先思考再推荐;Reasoning Enhancement捕获用户偏好多样性。实验使用1.29%流量测试,APP停留时长提升0.159%。关键技术包括多任务预训练实现ID与文本对齐、基于上下文的推理激活等,使推荐系统具备可解释性。该方法将推荐从黑盒预测转变为可推理过程,在保持大
2025-10-28 22:30:59
1091
原创 LLM之于推荐-RecGPT(阿里关于大模型召回的实践)
阿里提出基于大语言模型的推荐系统RecGPT,通过三塔模型架构实现召回效果提升。系统包含用户兴趣挖掘、商品标签预测和推荐归因三大模块,利用大模型能力将用户行为和属性转化为结构化兴趣标签。创新点包括:1)引入Tag塔学习语义相关性;2)分阶段生成用户兴趣和商品标签;3)采用行为序列压缩和模型微调优化方案。实验表明CTR等核心指标提升超5%,并验证了DeepSeek等开源模型的有效性。系统还设计了LLM自我评估机制,通过人工-模型协同实现持续优化。该方案显著提升了推荐系统在召回阶段的效果和多样性。
2025-10-22 12:04:24
1124
原创 推荐&投放面试宝典
AUC/PR、NDCG/HitRate、回归 RMSE/MAE、业务指标(CTR/CVR/GMV/时长)。:L1 稀疏、L2 防过拟合、Dropout/早停;
2025-10-22 09:25:26
672
原创 深度强化学习之123-概念梳理
摘要: 马尔可夫决策过程(MDP)是强化学习的核心数学模型,由五元组(状态空间、动作空间、状态转移概率、奖励函数、折扣因子)构成。MDP描述智能体在环境中通过策略π选择动作,产生轨迹并获得奖励的过程,其随机性体现在环境转移、策略选择和奖励噪声上。强化学习的目标是找到最优策略π*,最大化长期折扣回报,通过价值函数(V函数和Q函数)评估状态和动作的优劣。最终,MDP为强化学习提供了形式化框架,帮助智能体通过优化策略实现目标。
2025-10-20 10:33:12
657
原创 工业级推荐系统:召回融合
召回融合虽然鲜少出现在论文或开源库里,但它恰恰是推荐系统中决定流量格局的关键环节排序只是“打分”召回融合才是“给谁打分”它往往蕴含着策略、权重、优先级和冷启动扶持,是平台的“调流神器”。⚡ 一个聪明的召回融合策略,能带来的 CTR/CVR 提升,往往不输换一个排序模型。
2025-10-16 10:34:31
938
原创 ChatGPT From Zero To Hero - LLM学习笔记(一)
本文概述了从零训练ChatGPT的完整流程:1)预训练阶段包括数据爬取、分词(BPE编码)和神经网络训练;2)监督微调阶段通过对话数据优化模型,提出使用工具检索解决幻觉问题;3)SFT阶段通过"刷题训练"提升专业能力。文中推荐了nanoGPT、trl等实践资源,并指出模型存在拼写/计数等局限。完整训练需处理15万亿token数据,涉及无监督学习、监督微调和强化学习三个阶段。
2025-09-29 10:16:15
1534
原创 RecoWorld:用仿真环境加速下一代推荐系统
RecoWorld 的出现,标志着推荐系统从“离线指标驱动”迈向“在线仿真驱动”。更多真实用户特征的融入,使模拟更贴近真实分布多智能体交互,研究群体极化、信息扩散、创作者增长策略与生成式推荐结合,探索端到端的“指令驱动内容生成 + 分发”简而言之,RecoWorld 让推荐系统不再是“单向输出”,而是和用户进行深度对话、共同塑造信息流的智能体。
2025-09-29 09:38:35
990
原创 KL-Divergency,多样&探索
KL diversity 通常指,在信息论、机器学习和推荐系统中非常常见。它本质上是用 KL 散度来比较,以量化多样性或分布偏离程度。
2025-09-23 09:34:10
694
原创 特征交叉-RankerMixing(大模型时代的特征交叉)
在线效果Like、Finish、Comment 等互动指标也全线提升,对低活跃用户提升最显著,说明模型泛化能力强,说明LLM对传统ID类型推荐相比还是有知识优势。总结而言,性能效果全面领先。
2025-09-15 13:55:59
810
原创 Prompt工程实践
你在写prompt时候,是不是总觉得大模型它不听话。要么答非所问、要么一堆废话。扒开思考过程仔细阅读时而觉得它聪明绝顶,时而又觉得它愚蠢至极。明明已经对了怎么又推理到错的地方去了,明明在提示词中提醒过了不要这么思考它怎么就瞎想了。这也许就是每一个Prompt Engineer的困扰。怎么能让模型按照要求去思考。长提示词到底应该怎么写,有没有方法可以一次命中,找到那个终极的提示词。答案是否定的,一篇成功的长提示词总是要经历初始版本、调优、测试、再调优。不过这个过程中有规律可循,有方法可套。
2025-09-15 09:58:57
1022
原创 幻觉终结者:OpenAI 终于找到了根本原因
核心在于:让模型**敢于说“不知道”**比“瞎猜”更值钱。最近,OpenAI 正式揭开了大型语言模型(LLM)“幻觉”现象的真面目:原来问题不在于模型太“聪明”,而是它们的训练奖励机制本身,促使它们“自信满满地说错话”,却不愿诚实承认不知道。模型缺乏判断生成内容真伪的能力,特别是面对极少出现的单次事实,其错误可能率媲美其出现概率;设定规则:只有当模型置信度 > 某一阈值才作答,答错扣分,“我不知道”则不扣分。传统评估机制反而惩罚说“我不知道”,让模型宁愿浮夸地答错,也不甘承认无从得知。
2025-09-08 22:59:23
425
原创 视频推荐排序的样本工程化
→ 正样本有显式负反馈(点踩/不感兴趣) → 剔除p_i ≥ 3s且显式负反馈→ 强负低分位(q ≤ 0.1)→ 强负→ 弱负其余 → 中性(可不训练或弱采样)
2025-09-02 11:18:50
419
原创 End-To-End 之于推荐-kuaishou OneRec2 笔记
提出 Lazy Decoder-Only 架构,彻底移除 encoder,context 只作为静态条件输入,通过轻量 cross-attention 与 GQA(Grouped Query Attention)完成交互。:V1 的 Encoder-Decoder 架构里,97.66% 的算力都消耗在 context encoding,真正用于生成推荐结果的部分只有 2.34%,导致算力浪费、扩展性差。改进 RL 的 ratio clipping,结合 BCE 的稳定梯度,防止负样本导致梯度爆炸。
2025-09-02 10:32:29
1065
转载 从Banner,激励视频到互动广告,一文了解互联网广告的主要形式
我们看到,现代互联网广告形式早已突破“横幅 + 链接”这种传统思路,逐渐演化出内容化、互动化、游戏化、剧情化等多元模式。这些广告形式在视觉样式、交互设计、曝光路径上各不相同,但它们背后的共同点,是都服务于两个核心目标:提高用户参与度(Attention)和提升转化效率(Conversion)。而为了实现这两个目标,广告系统必须在广告样式、素材质量、定向能力、排序机制等多个维度上进行深度优化。
2025-08-05 10:11:11
204
原创 Git 分支协作与变基流程实战:使用 stash、安全 rebase、同步主干的最佳实践
本文介绍了使用 stash + rebase 同步分支的推荐工作流:1)先 git stash 暂存未提交内容;2)更新 master 分支代码;3)切换回开发分支执行 git rebase master;4)通过 git stash pop 恢复工作内容;5)提交并推送修改。重点讲解了如何安全处理 rebase 冲突及 stash 操作技巧,同时提醒注意强制 push 的风险。该流程能保持分支历史清晰,减少合并冲突。
2025-07-10 16:04:25
590
原创 从 .proto 到 Python: 使用 Protocol Buffers 的完整实践指南
Protocol Buffers (protobuf) 是一种高效的跨语言数据序列化协议,相比JSON/XML具有体积小、速度快、强类型等优势。使用流程包括:定义.proto文件结构→protoc编译生成Python代码→业务代码调用。示例展示了视频历史数据的proto定义、Python序列化/反序列化操作,以及Redis存储的两种方案(string整体存储或list分条存储)。最后提供了Redis封装的实用建议,包含数据追加和读取的完整实现,特别适合需要高性能数据存储的场景。protobuf在Redis中
2025-07-08 17:28:13
664
原创 End-To-End 之于推荐-kuaishou OneRec 笔记
OneRec 提出了一种,打破了传统“召回-粗排-精排”级联式推荐流程,使用同时完成召回与排序任务。该系统由快手团队研发,并成功部署于短视频主场景。
2025-06-27 18:57:51
1848
原创 推荐系统的视频特征-视频关键帧特征提取与向量生成
CLIP(Contrastive Language-Image Pretraining)适合推荐系统做。可直接用于用户-视频召回、相似度检索、排序模型等模块。你可以配合视频标签、标题、评论等文本用 CLIP 提。,对视频封面帧或场景帧提取效果非常好。
2025-06-26 19:14:43
553
原创 视频关键帧提取
视频关键帧提取技术指南 本文介绍两种视频关键帧提取方法: 1️⃣ FFmpeg:基于编码结构提取I帧(完整图像帧),通过分析帧头信息识别关键帧,适合快速获取画面基准点。 2️⃣ SceneDetect:基于视觉内容变化检测场景切换,使用直方图/亮度差异分析语义关键帧,适合内容分析场景。 📌 对比特点: FFmpeg效率高但不考虑语义,SceneDetect需解码帧但更贴合内容变化 实际应用可结合两者,如FFmpeg获取基准帧后,用SceneDetect筛选语义关键帧 🔧 附实战脚本:支持自动分目录输出两
2025-06-26 19:06:08
2073
1
原创 Torch分布式训练-DDP实战
本文介绍了PyTorch分布式训练(DDP)的核心原理与实现。主要内容包括: DDP通过AllReduce机制实现多GPU梯度同步,确保模型参数一致性 对比了不同分布式训练方式,推荐使用DDP作为标准方案 详细解析了DDP的梯度同步流程和优化原理 提供了使用Docker搭建分布式训练环境的实践指南 包含网络配置、容器启动和代码示例等实战内容 DDP作为PyTorch官方推荐的分布式方案,能有效利用多GPU资源加速训练,特别适合大规模深度学习任务。该技术通过自动同步梯度而非参数的方式,保证了训练的高效性和稳定
2025-06-26 10:40:25
1174
原创 如何挑选真正的白马股?从PE、ROE到净现比、收现比全面理解
摘要:真正的白马股需满足三个关键指标:1)合理市盈率(PE),关注估值与成长空间的匹配度;2)长期稳定的高净资产收益率(ROE),维持在15%以上为佳;3)现金流质量,净现比和收现比大于1,确保利润真实可靠。符合"三高一稳"(合理估值、高ROE、高现金流、业绩稳定)的公司极少,但能长期经得起周期考验的才是真白马。投资者应关注企业持续盈利能力和现金流质量,而非短期股价表现或市场故事。
2025-06-18 09:49:46
1028
原创 凯利公式在股票投资中的实用性:理论神器还是现实陷阱?
想象你带着1000元起始资金参加这样一个翻硬币挑战游戏,你可以选择一直玩下去:每轮抛一次硬币,抛到正面,财富增加 80%。抛到反面,财富减少 50%。听上去是个稳赚不赔的游戏!但现实是……如果让10万个玩家参加这个游戏,并让他们各自玩100轮,你会发现:他们的平均财富确实在指数增长,但绝大多数人最后的财富竟然不到72元,甚至破产!为什么平均财富是增长的,但大多数人却越玩越穷?这就是典型的非遍历性陷阱。总觉得再来一局就能翻盘,恰恰是因为我们误把群体平均当成了个体命运。
2025-06-12 17:52:12
890
原创 Langchain&RAG you need - 段落拆分
文章摘要:本文介绍了LangChain中6种文本拆分器,重点推荐RecursiveCharacterTextSplitter和MarkdownHeaderTextSplitter。RecursiveCharacterTextSplitter采用逐层回退策略(段落→句子→单词→字符),适合通用文本处理,支持中文优化配置。MarkdownHeaderTextSplitter专用于结构化Markdown文档,自动维护标题层级元数据。表格对比了6种拆分器的推荐度、使用场景和特性,其中RecursiveCharact
2025-06-05 22:11:55
1022
原创 深入浅出互联网归因分析模型(二):Markov链与Shapley值模型详解与实战
数据驱动的归因模型通过分析用户转化路径中的触点贡献,帮助优化营销策略。Markov链归因模型通过删除触点并观察转化率变化,衡量触点的必要性,适合分析路径顺序和关键节点。Shapley值归因模型则基于博弈论,计算触点在所有组合中的平均边际贡献,适合评估触点的整体效益。两种方法各有侧重,Markov强调路径中的关键触点,Shapley则关注触点的平均贡献,实际应用中可互为补充,提供更全面的归因分析。
2025-05-21 19:27:18
1189
原创 深入浅出互联网归因分析模型(一): 6种常见的归因分析模型
在数字营销和推荐系统中,**归因分析(Attribution Analysis)**扮演着至关重要的角色。它帮助我们回答:用户完成转化前,到底是哪个渠道最起决定性作用?本文将系统梳理6种常见的归因分析模型,配以实际案例,并提供模型优化建议。在电商、APP拉新、投放优化中,我们常面临这样的疑问:用户通过搜索点击了广告,但他在三天前也点过一次公众号文章——是谁真正促成了这次转化?如果不清楚“谁功劳最大”,就无法有效分配营销预算,也难以优化运营策略。2.1 最后点击归因(Last Click Attribut
2025-05-21 18:08:48
1822
原创 互联网通用指标体系说明
本说明文档系统整理了互联网行业中常用的大盘指标,包括定义、作用、计算方式及应用场景,适用于产品分析、数据监控、运营决策等多个维度。VV(Video View,视频播放量)三、内容/视频平台指标。五、指标关系与应用场景。四、电商平台核心指标。
2025-04-24 15:44:20
1671
转载 pycharm + deepseek 实现curse功能
点击左侧“API Keys”,点击创建 API key,输出名称为“AI 代码提示”,也可以使用其它自定义的名称。插件安装成功后,在右侧的标签栏中,会显示一个Continue的标签,我们点击即可进入,随后点击设置按键,如下图。点击“创建",一定要记录此处的 API key,可以先将 API key 复制在其它地方。打开PyCharm,打开文件->设置->插件,搜索“Continue”,点击安装。随后,我们将两处apiKey替换为先前保存的API key。等待插件安装完毕后,点击“应用”,插件安装成功。
2025-02-13 11:53:11
371
原创 特征交叉-CAN学习笔记&代码解读
两部分concat以后加一个DNN常规操作,看起来就像是用co-action做显式的特征交叉,然后DIEN做之前的序列建模。举个例子:如果是用户ID和产品ID的co-action,且产品ID是做induction,用户ID是做feed。
2024-12-11 10:43:34
788
原创 特征交叉-FiBiNet特征交叉原理与代码学习
两个field做交叉得到新的特征,比方把物品和用户地点做embedding,然后做交叉, 如果用inner product和hadamard乘积,必须维度一致,不一致的情况下,Bilinear引入了一个W矩阵,保证两者可以做交叉。SENet 虽然不是特征交叉方法,但是是在FiBiNet这个文章里一起出现的,就说明下,是一种field-wise加权,一共m个field。1)field维度的平均池化:每一个field做average-pooling,3)还原:再加一个linear+sigmoid还原成m维度。
2024-11-25 19:08:20
550
原创 特征交叉-MaskNet文章总结&代码实现
串行的第一个是一个MaskBlock on feature embedding,后面接的都是MaskBlock on MaskBlock;主要有两种使用,一个是对embedding进行处理,图里LN-EMB里的LN指的是Layer Normalization。所有特征都和Instance-guide-mask进行运算,可以是串行的也可以是并行的。1) 2) 结束之后,文章的核心内容也基本结束,后面3)是MaskBlock的应用。最终输出的是一个处理后的embedding向量,后面简称为mask。
2024-11-22 18:41:47
1437
原创 特征交叉-Deep&Cross Network学习
一 tensorflow官方实现tensorflow的官方实现已经是V2版本class Cross(tf.keras.layers.Layer): """Cross Layer in Deep & Cross Network to learn explicit feature interactions. Args: projection_dim: int,低秩矩阵的维度,应该小于input_dim/2, 官方建议input_dim/4 diag_s
2024-11-20 11:52:20
621
1
原创 一种可以识别局部单调的系数
传统的相关性测量方法通常假定X与Y之间的关系是线性的,即X和Y之间的相关性是对称的。然而,新方法的目标是测量Y作为X的函数的程度,因此ξ(X, Y)不一定等于ξ(Y, X)。为了计算ξ,我们首先需要对数据进行排序,使得X的值按从小到大的顺序排列。然后,我们需要计算Y值的秩。pearson和kendall等系数再识别单调的时候,更多是关注整体情况,很多时候,变量和因变量之间非简单的单调关系,局部单调ξ识别。需要注意的是这个系数本质上还是去识别单调,比pearson之类的提升也仅限于局部单调的识别。
2024-06-17 11:52:47
413
基于OeRec架的端到端生成模型优化:多模语义理解与高效推理统一基座设计
2025-10-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅