数据资产 7.0 与 6.0 的差异研究报告

在当今数字经济蓬勃发展的时代,数据已然成为企业乃至整个社会最为关键的生产要素之一。数据资产管理的优劣,直接关系到企业能否在激烈的市场竞争中脱颖而出,实现可持续发展。今天就来和大家深入探讨一下数据资产 7.0 与 6.0 的差异,一起来看看吧!

一、引言

1.1 研究背景与目的

在这个数字化浪潮席卷而来的时代,数据的重要性不言而喻。从数据资产 6.0 到 7.0 的迭代,背后有着怎样的故事呢?深入研究这两个版本的差异,能帮助企业更好地把握数据资产管理的趋势,优化管理策略,挖掘数据潜在价值。这也是我们撰写这份报告的初衷。

1.2 研究方法与数据来源

我们综合运用了文献研究法和案例分析法。查阅了大量国内外权威文献、行业报告和学术论文,还研究了多个行业企业的数据资产管理实践案例。数据来源丰富,包括知名咨询机构报告、行业领军企业公开资料以及专业学术数据库文献。

二、数据资产 7.0 的背景

2.1 数字经济发展趋势

近年来,数字经济发展迅猛。全球数字经济规模持续高速增长,在中国,数字经济规模连续多年保持两位数增长,成为经济增长的新引擎。在数字经济时代,数据就像石油和电力一样重要,企业通过对数据的收集、分析和应用,能洞察市场需求、优化产品服务,提升竞争力。

2.2 政策推动与行业需求

国家大力推动数据要素市场化配置,出台了一系列政策法规。比如,明确要建立健全数据要素市场体系,完善数据产权保护制度。在行业层面,企业数字化转型深入推进,对数据资产管理的需求日益迫切。无论是金融行业对风险管控的精准要求,还是制造业对生产流程优化的需求,都离不开高效的数据资产管理。

2.3 技术发展的影响

大数据、人工智能、区块链等新兴技术的发展,为数据资产管理带来了变革。大数据技术让企业能处理海量数据,人工智能技术赋予数据强大的分析能力,区块链技术保障了数据的安全流通。这些技术推动了数据资产管理向智能化、高效化转变,为数据资产 7.0 的诞生奠定了基础。

三、数据资产 7.0 的知识框架

3.1 数据资源化阶段

3.1.1 DataOps 新模式

DataOps 是一种全新的模式,它强调业务、数据和技术团队的紧密协作。通过引入自动化工具和流程,实现数据的快速开发、可靠交付和持续运维。浙江移动实施 DataOps 后,数据开发周期缩短了 30%,数据质量显著提升;工商银行借助 DataOps 实现了数据的全生命周期管理,支持了业务创新发展。

3.1.2 数据架构全景视图

数据架构全景视图全面梳理和呈现企业数据资产,涵盖数据模型、流向、存储方式及关联关系。通过这个视图,企业能清晰了解数据资产分布,实现数据与业务的深度融合。在数据质量管理和安全管理方面,都能发挥重要作用。

3.2 数据资产化阶段

3.2.1 数据价值评估

数据价值评估是关键环节。7.0 版本采用成本法、收益法、市场法相结合的综合评估方法。成本法核算数据成本,收益法评估数据带来的经济效益,市场法参考市场交易价格。企业通过综合运用这些方法,能构建完善的数据资产价值管理体系,为数据资源入表提供依据。

3.2.2 数据资产流通

在 7.0 版本中,数据资产流通更规范高效。明确了数据的所有权、使用权和收益权,建立了 “三权分置” 权属体系。场内交易市场更规范,场外交易市场也不断发展,企业合作更加灵活多样。中国移动通过与多家企业开展数据合作,实现了数据的共享和增值。

3.2.3 数据资产运营

数据资产运营是实现价值最大化的重要手段。7.0 版本中,企业注重数据资产体系建设,建立完善的数据资产目录,丰富数据服务形式,加强市场营销和成本分析,提升了数据的市场价值和运营效益。

3.3 数据资产管理保障措施

3.3.1 战略管理

数据战略是企业数据资产管理的顶层设计。7.0 版本中,企业注重数据战略与总体战略的深度融合。中国一汽在推进数智化转型战略时,将数据战略作为重要支撑,实现了企业的转型升级。

3.3.2 组织架构

数据资产管理组织架构更加完善,设立了四个层级,明确了职责权限。通过建立数据认责机制,加强了跨部门协同合作,提高了管理效率和效果。数据运营部门的设立,让数据资产运营更专业。

3.3.3 制度体系

制度体系更加细化完善,包括四个层次。交通银行建立完善的制度体系,规范了数据管理的各个环节。北京电力等企业还建立了业务案例和数据应用案例集,为数据管理提供实践指导。

3.3.4 平台工具

DataOps 平台和数据运营平台是重要工具。DataOps 平台实现数据研发全流程自动化,数据运营平台专注于资产运营管理。越秀集团的 “悦数通” 平台整合两者功能,提升了企业数据管理水平。

3.3.5 长效机制

建立了完善的培训宣贯机制,加强绩效考核和激励,建立审计机制,注重数据文化培养。这些长效机制保障了数据资产管理的持续有效运行。

四、数据资产 6.0 的知识框架

4.1 数据资产管理活动职能

4.1.1 数据模型管理至数据开发管理

6.0 版本中,数据模型管理侧重构建数据模型架构,确保数据一致性和规范性。数据开发管理围绕数据采集、清洗等环节,注重流程规范性和效率,但对数据质量的把控多从技术层面进行。

4.1.2 数据资产流通至数据资产运营

数据资产流通主要是企业内部的数据共享和交换。数据资产运营主要是简单的数据统计和分析,在价值评估和市场营销方面相对薄弱。

4.2 数据资产管理保障措施

4.2.1 战略管理至长效机制

战略管理方面,与总体战略融合度低,实施路径不清晰。组织架构上,职责分散,缺乏明确认责机制,跨部门协同效率低。制度体系基本建立,但细化程度和执行力度不足。平台工具以传统工具为主,自动化和智能化程度低。长效机制不完善,对数据文化培养重视不足。

五、7.0 与 6.0 的差异分析

对比维度数据资产 6.0数据资产 7.0差异说明(7.0 的进步之处)
数据资产概念与内涵定义相对狭义,侧重数据资源属性,数据权属界定模糊定义拓展深化,强调资产属性,明确 “三权分置” 数据权属体系明确权属,将数据视为能带来经济利益的资产,更利于数据价值挖掘与利用
数据资源化阶段 - 管理模式传统管理模式,业务、数据和技术团队沟通协作少,开发交付流程繁琐引入 DataOps 模式,强调团队紧密协作与高效沟通,实现数据快速开发、可靠交付和持续运维提升协同效率,快速响应业务需求,持续保障数据质量
数据资源化阶段 - 数据架构管理主要关注数据存储和处理架构,对数据与业务对齐程度关注不足构建数据架构全景视图,全面直观了解数据资产分布,实现数据与业务深度融合助力业务与数据深度结合,为数据质量管理、安全管理提供有力支撑
数据资产化阶段 - 数据价值评估方法相对单一,主要侧重成本法,对收益和市场价值考虑不足采用成本法、收益法和市场法相结合的综合评估方法评估更全面准确,为数据资源入表和资产运营提供科学依据
数据资产化阶段 - 数据资产流通流通局限于企业内部,数据权属不明确,交易市场不规范流通范围扩大到企业外部,权属明确,场内和场外交易市场不断完善,交易规则和监管机制更规范保障数据合法流通与交易安全,拓展数据价值实现途径
数据资产化阶段 - 数据资产运营以数据统计和分析为主,服务形式单一,对市场营销和成本分析不够重视注重数据资产体系建设,丰富数据服务形式,加强市场营销和成本分析提升数据市场价值,优化运营效益,实现数据价值最大化
保障措施 - 战略管理与企业总体战略融合度低,实施路径不明确与企业总体战略紧密结合,从业务目标出发制定明确的战略目标和实施路径确保数据战略有效支撑企业发展,增强企业战略协同性
保障措施 - 组织架构职责不够明确,缺乏有效数据认责机制,跨部门协同效率低建立完善架构,明确各层级职责权限,建立数据认责机制,加强跨部门协同提高数据管理效率和效果,保障数据管理工作有序开展
保障措施 - 制度体系相对简单,细化程度和执行力度不足制度体系完善,包括四个层次,还建立业务和数据应用案例集为制度执行提供实践指导,提升制度的可操作性和执行效果
保障措施 - 平台工具依赖传统数据管理工具,自动化和智能化程度低引入 DataOps 平台和数据运营平台,实现全流程自动化和智能化大幅提高数据管理效率和质量,适应现代数据管理需求
保障措施 - 长效机制培训宣贯和绩效考核机制不健全,对数据文化培养重视不足建立完善培训宣贯机制,加强绩效考核和激励,建立审计机制,注重数据文化培养保障数据资产管理持续有效运行,营造良好数据管理文化氛围

六、研究结论

6.1 差异总结

数据资产 7.0 相较于 6.0,实现了全面升级。从概念内涵的拓展,到数据资源化和资产化阶段方法与机制的改进,再到保障措施的全方位优化,构建了一个更完善的数据资产管理生态体系。

6.2 对数据资产管理的影响

这种升级对企业数据资产管理产生了变革性影响。在财务、运营和管理层面,都带来了积极的改变,提升了企业的竞争力和价值。

6.3 未来展望

随着数字经济和技术的发展,数据资产管理将朝着智能化、精细化、生态化迈进。企业需要不断创新,充分释放数据要素的潜能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值