在当今数字经济蓬勃发展的时代,数据已然成为企业乃至整个社会最为关键的生产要素之一。数据资产管理的优劣,直接关系到企业能否在激烈的市场竞争中脱颖而出,实现可持续发展。今天就来和大家深入探讨一下数据资产 7.0 与 6.0 的差异,一起来看看吧!
一、引言
1.1 研究背景与目的
在这个数字化浪潮席卷而来的时代,数据的重要性不言而喻。从数据资产 6.0 到 7.0 的迭代,背后有着怎样的故事呢?深入研究这两个版本的差异,能帮助企业更好地把握数据资产管理的趋势,优化管理策略,挖掘数据潜在价值。这也是我们撰写这份报告的初衷。
1.2 研究方法与数据来源
我们综合运用了文献研究法和案例分析法。查阅了大量国内外权威文献、行业报告和学术论文,还研究了多个行业企业的数据资产管理实践案例。数据来源丰富,包括知名咨询机构报告、行业领军企业公开资料以及专业学术数据库文献。
二、数据资产 7.0 的背景
2.1 数字经济发展趋势
近年来,数字经济发展迅猛。全球数字经济规模持续高速增长,在中国,数字经济规模连续多年保持两位数增长,成为经济增长的新引擎。在数字经济时代,数据就像石油和电力一样重要,企业通过对数据的收集、分析和应用,能洞察市场需求、优化产品服务,提升竞争力。
2.2 政策推动与行业需求
国家大力推动数据要素市场化配置,出台了一系列政策法规。比如,明确要建立健全数据要素市场体系,完善数据产权保护制度。在行业层面,企业数字化转型深入推进,对数据资产管理的需求日益迫切。无论是金融行业对风险管控的精准要求,还是制造业对生产流程优化的需求,都离不开高效的数据资产管理。
2.3 技术发展的影响
大数据、人工智能、区块链等新兴技术的发展,为数据资产管理带来了变革。大数据技术让企业能处理海量数据,人工智能技术赋予数据强大的分析能力,区块链技术保障了数据的安全流通。这些技术推动了数据资产管理向智能化、高效化转变,为数据资产 7.0 的诞生奠定了基础。
三、数据资产 7.0 的知识框架
3.1 数据资源化阶段
3.1.1 DataOps 新模式
DataOps 是一种全新的模式,它强调业务、数据和技术团队的紧密协作。通过引入自动化工具和流程,实现数据的快速开发、可靠交付和持续运维。浙江移动实施 DataOps 后,数据开发周期缩短了 30%,数据质量显著提升;工商银行借助 DataOps 实现了数据的全生命周期管理,支持了业务创新发展。
3.1.2 数据架构全景视图
数据架构全景视图全面梳理和呈现企业数据资产,涵盖数据模型、流向、存储方式及关联关系。通过这个视图,企业能清晰了解数据资产分布,实现数据与业务的深度融合。在数据质量管理和安全管理方面,都能发挥重要作用。
3.2 数据资产化阶段
3.2.1 数据价值评估
数据价值评估是关键环节。7.0 版本采用成本法、收益法、市场法相结合的综合评估方法。成本法核算数据成本,收益法评估数据带来的经济效益,市场法参考市场交易价格。企业通过综合运用这些方法,能构建完善的数据资产价值管理体系,为数据资源入表提供依据。
3.2.2 数据资产流通
在 7.0 版本中,数据资产流通更规范高效。明确了数据的所有权、使用权和收益权,建立了 “三权分置” 权属体系。场内交易市场更规范,场外交易市场也不断发展,企业合作更加灵活多样。中国移动通过与多家企业开展数据合作,实现了数据的共享和增值。
3.2.3 数据资产运营
数据资产运营是实现价值最大化的重要手段。7.0 版本中,企业注重数据资产体系建设,建立完善的数据资产目录,丰富数据服务形式,加强市场营销和成本分析,提升了数据的市场价值和运营效益。
3.3 数据资产管理保障措施
3.3.1 战略管理
数据战略是企业数据资产管理的顶层设计。7.0 版本中,企业注重数据战略与总体战略的深度融合。中国一汽在推进数智化转型战略时,将数据战略作为重要支撑,实现了企业的转型升级。
3.3.2 组织架构
数据资产管理组织架构更加完善,设立了四个层级,明确了职责权限。通过建立数据认责机制,加强了跨部门协同合作,提高了管理效率和效果。数据运营部门的设立,让数据资产运营更专业。
3.3.3 制度体系
制度体系更加细化完善,包括四个层次。交通银行建立完善的制度体系,规范了数据管理的各个环节。北京电力等企业还建立了业务案例和数据应用案例集,为数据管理提供实践指导。
3.3.4 平台工具
DataOps 平台和数据运营平台是重要工具。DataOps 平台实现数据研发全流程自动化,数据运营平台专注于资产运营管理。越秀集团的 “悦数通” 平台整合两者功能,提升了企业数据管理水平。
3.3.5 长效机制
建立了完善的培训宣贯机制,加强绩效考核和激励,建立审计机制,注重数据文化培养。这些长效机制保障了数据资产管理的持续有效运行。
四、数据资产 6.0 的知识框架
4.1 数据资产管理活动职能
4.1.1 数据模型管理至数据开发管理
6.0 版本中,数据模型管理侧重构建数据模型架构,确保数据一致性和规范性。数据开发管理围绕数据采集、清洗等环节,注重流程规范性和效率,但对数据质量的把控多从技术层面进行。
4.1.2 数据资产流通至数据资产运营
数据资产流通主要是企业内部的数据共享和交换。数据资产运营主要是简单的数据统计和分析,在价值评估和市场营销方面相对薄弱。
4.2 数据资产管理保障措施
4.2.1 战略管理至长效机制
战略管理方面,与总体战略融合度低,实施路径不清晰。组织架构上,职责分散,缺乏明确认责机制,跨部门协同效率低。制度体系基本建立,但细化程度和执行力度不足。平台工具以传统工具为主,自动化和智能化程度低。长效机制不完善,对数据文化培养重视不足。
五、7.0 与 6.0 的差异分析
对比维度 | 数据资产 6.0 | 数据资产 7.0 | 差异说明(7.0 的进步之处) |
---|---|---|---|
数据资产概念与内涵 | 定义相对狭义,侧重数据资源属性,数据权属界定模糊 | 定义拓展深化,强调资产属性,明确 “三权分置” 数据权属体系 | 明确权属,将数据视为能带来经济利益的资产,更利于数据价值挖掘与利用 |
数据资源化阶段 - 管理模式 | 传统管理模式,业务、数据和技术团队沟通协作少,开发交付流程繁琐 | 引入 DataOps 模式,强调团队紧密协作与高效沟通,实现数据快速开发、可靠交付和持续运维 | 提升协同效率,快速响应业务需求,持续保障数据质量 |
数据资源化阶段 - 数据架构管理 | 主要关注数据存储和处理架构,对数据与业务对齐程度关注不足 | 构建数据架构全景视图,全面直观了解数据资产分布,实现数据与业务深度融合 | 助力业务与数据深度结合,为数据质量管理、安全管理提供有力支撑 |
数据资产化阶段 - 数据价值评估 | 方法相对单一,主要侧重成本法,对收益和市场价值考虑不足 | 采用成本法、收益法和市场法相结合的综合评估方法 | 评估更全面准确,为数据资源入表和资产运营提供科学依据 |
数据资产化阶段 - 数据资产流通 | 流通局限于企业内部,数据权属不明确,交易市场不规范 | 流通范围扩大到企业外部,权属明确,场内和场外交易市场不断完善,交易规则和监管机制更规范 | 保障数据合法流通与交易安全,拓展数据价值实现途径 |
数据资产化阶段 - 数据资产运营 | 以数据统计和分析为主,服务形式单一,对市场营销和成本分析不够重视 | 注重数据资产体系建设,丰富数据服务形式,加强市场营销和成本分析 | 提升数据市场价值,优化运营效益,实现数据价值最大化 |
保障措施 - 战略管理 | 与企业总体战略融合度低,实施路径不明确 | 与企业总体战略紧密结合,从业务目标出发制定明确的战略目标和实施路径 | 确保数据战略有效支撑企业发展,增强企业战略协同性 |
保障措施 - 组织架构 | 职责不够明确,缺乏有效数据认责机制,跨部门协同效率低 | 建立完善架构,明确各层级职责权限,建立数据认责机制,加强跨部门协同 | 提高数据管理效率和效果,保障数据管理工作有序开展 |
保障措施 - 制度体系 | 相对简单,细化程度和执行力度不足 | 制度体系完善,包括四个层次,还建立业务和数据应用案例集 | 为制度执行提供实践指导,提升制度的可操作性和执行效果 |
保障措施 - 平台工具 | 依赖传统数据管理工具,自动化和智能化程度低 | 引入 DataOps 平台和数据运营平台,实现全流程自动化和智能化 | 大幅提高数据管理效率和质量,适应现代数据管理需求 |
保障措施 - 长效机制 | 培训宣贯和绩效考核机制不健全,对数据文化培养重视不足 | 建立完善培训宣贯机制,加强绩效考核和激励,建立审计机制,注重数据文化培养 | 保障数据资产管理持续有效运行,营造良好数据管理文化氛围 |
六、研究结论
6.1 差异总结
数据资产 7.0 相较于 6.0,实现了全面升级。从概念内涵的拓展,到数据资源化和资产化阶段方法与机制的改进,再到保障措施的全方位优化,构建了一个更完善的数据资产管理生态体系。
6.2 对数据资产管理的影响
这种升级对企业数据资产管理产生了变革性影响。在财务、运营和管理层面,都带来了积极的改变,提升了企业的竞争力和价值。
6.3 未来展望
随着数字经济和技术的发展,数据资产管理将朝着智能化、精细化、生态化迈进。企业需要不断创新,充分释放数据要素的潜能。