这两天连着看到了几道可以用分圆多项式来做的题目,闲得无聊的我决定整理一下我还记得的分圆多项式的内容。由于我记得的都比较简单,所以这篇文章应该还蛮友好的(有一点多项式和数论基础就可以了)...
PART 1 分圆多项式的介绍
1.1 本原单位根
要说分圆多项式,当然要先说本原单位根。我们都知道,
是个
次单位根,它可以生成
的全部复根:
。换句话说,对
都有
。对于
次单位根
,定义它的阶
是
满足
的最小正整数
,那么有
,且对任意的
次单位根,它的阶必然能整除
。
我们称阶为
的
次单位根为
次本原单位根。
次本原单位根当然(一般)不止
一个,事实上,若
是与
互素的正整数,则
,从而
,
为一个
次本原单位根。
于是我们立刻得到:
次本原单位根有
个
在这给出一个有趣的结论:给定正整数n,所有n次本原单位根之和恰为n的莫比乌斯函数
1.2 分圆多项式
给定正整数
,我们定义
级分圆多项式
,其中
是全部
次本原单位根。则
是一个
次多项式,它的一些简单性质将在下一节进行介绍。下面是几个例子:
PART 2 分圆多项式的一些简单性质
2.1 对任意正整数n,
证明:令
,则
一方面,对
,
是
次本原单位根且
,从而
是右边某一项的因式,于是我们得到了
。
另一方面,若
既为
次本原单位根,又为
次本原单位根,则
,进而由本原单位根定义有
,则
。那么
时,
。对
的任意因子
,
,故
。
又这两个多项式都是首一的,从而我们证明了
。
一个显然的推论是:
,根据莫比乌斯反演公式,还可以得到: