这两天连着看到了几道可以用分圆多项式来做的题目,闲得无聊的我决定整理一下我还记得的分圆多项式的内容。由于我记得的都比较简单,所以这篇文章应该还蛮友好的(有一点多项式和数论基础就可以了)...
PART 1 分圆多项式的介绍
1.1 本原单位根
要说分圆多项式,当然要先说本原单位根。我们都知道,
![]()
是个
![]()
次单位根,它可以生成
![]()
的全部复根:
![]()
。换句话说,对
![]()
都有
![]()
。对于
![]()
次单位根
![]()
,定义它的阶
![]()
是
满足
的最小正整数
![]()
,那么有
![]()
,且对任意的
![]()
次单位根,它的阶必然能整除
![]()
。
我们称阶为
![]()
的
![]()
次单位根为
![]()
次本原单位根。
![]()
次本原单位根当然(一般)不止
![]()
一个,事实上,若
![]()
是与
![]()
互素的正整数,则
![]()
,从而
![]()
,
![]()
为一个
![]()
次本原单位根。
于是我们立刻得到:
次本原单位根有
个
在这给出一个有趣的结论:给定正整数n,所有n次本原单位根之和恰为n的莫比乌斯函数
1.2 分圆多项式
给定正整数
![]()
,我们定义
![]()
级分圆多项式
![]()
,其中
![]()
是全部
![]()
次本原单位根。则
![]()
是一个
![]()
次多项式,它的一些简单性质将在下一节进行介绍。下面是几个例子:
PART 2 分圆多项式的一些简单性质
2.1 对任意正整数n,
证明:令
![]()
,则
一方面,对
![]()
,
![]()
是
![]()
次本原单位根且
![]()
,从而
![]()
是右边某一项的因式,于是我们得到了
![]()
。
另一方面,若
![]()
既为
![]()
次本原单位根,又为
![]()
次本原单位根,则
![]()
,进而由本原单位根定义有
![]()
,则
![]()
。那么
![]()
时,
![]()
。对
![]()
的任意因子
![]()
,
![]()
,故
![]()
。
又这两个多项式都是首一的,从而我们证明了
![]()
。
一个显然的推论是:
![]()
,根据莫比乌斯反演公式,还可以得到:
2.2 对任意正整数
![]()
,
证明:
![]()
时,
假设命题对一切小于
![]()
的正整数成立,则对于
![]()
阶分圆多项式:
由2.1,
![]()
,由归纳假设和高斯引理知
![]()
为本原多项式,进而
2.3 对任意正整数
![]()
,
![]()
是
![]()
中的不可约多项式
证明:设
![]()
,其中
![]()
为首一整系数多项式,
![]()
非常数且在
![]()
上不可约。
![]()
为素数时,这个结论是相当经典的,可以变形后使用爱森斯坦判别法。对于一般的情况,我们证明的思路是说明
![]()
的每个根都是
![]()
的根,从而得到结论。
取
![]()
的一个根
![]()
和与
![]()
互素的素数
![]()
,则
![]()
是
![]()
或者
![]()
的根
假设
![]()
是
![]()
的根,则
![]()
是
![]()
和
![]()
的公共根,则
设
![]()
,则
再设
![]()
,则
![]()
,这说明
![]()
有重根,这与
![]()
矛盾,于是
![]()
是
![]()
的根。
那么我们容易知道:对任意与
![]()
互素的正整数
![]()
,
![]()
是
![]()
的根(用标准分解即可说明,其实这才是最初考虑取
![]()
的原因)。从而
![]()
的根都是
![]()
的根,于是
![]()
为
![]()
中的不可约多项式。
2.4
![]()
为素数,且
![]()
,则
证明:对任意的
![]()
次本原单位根
![]()
,
![]()
显然是
![]()
次本原单位根
对任意
![]()
次本原单位根
![]()
,由
![]()
知
![]()
也是
![]()
次本原单位根
那么,
![]()
的任意根都是
![]()
的根。
比较次数:
即可得到
![]()
。
类似地,易证对任意正整数
![]()
,
![]()
,这将在2.7中用到。
2.5
![]()
为正整数,
![]()
是
![]()
的真因子,
![]()
为素数。若存在整数
![]()
,满足
![]()
,则
证明:由
![]()
为
![]()
的真因子知
![]()
,从而
设
![]()
,则
于是
![]()
,结论成立。
2.6
![]()
若
![]()
为素数,则
![]()
,否则
![]()
为素数时,
![]()
,结论成立。
利用
![]()
,用数学归纳法即可证明结论。
结合
![]()
,容易计算
![]()
。
2.7若存在整数
![]()
满足
![]()
,则
![]()
为一个素数幂
证明:
![]()
时,由2.6可知结论成立,以下设
![]()
。
取素数
![]()
,设
![]()
,其中
![]()
,下面只要证明
![]()
即可。
先说明
![]()
:
![]()
时,结论平凡
![]()
时,
进而有
![]()
,同理
若
![]()
,不妨设
![]()
,并记
![]()
,则
存在
![]()
的因子
![]()
,
![]()
。
![]()
为
![]()
的真因子,由2.5知
![]()
,矛盾。
故
![]()
,则
![]()
为素数幂,结论成立。
PART 3 分圆多项式的几个应用
3.1 因式分解
不多解释,毕竟我第一次看到分圆多项式就是在初中小蓝皮因式分解上,所以单拿出来写一下...
3.2
为互素的正整数
且
,求一切
解:令
![]()
,则
显然
![]()
是
![]()
的根,于是
从而容易知道
进而
![]()
为全部所求。
3.3 求证:存在无穷多正整数
![]()
,
![]()
的最大素因子小于
处理这类问题的常见思路是把不能分解的东西作换元,使之能再分下去,而分圆多项式则是一个相当好的工具,它能分得足够细。只要说明存在无穷多正整数
![]()
,
![]()
的最大素因子小于
![]()
即可。令
![]()
,
![]()
,右边乘积中最高次多项式为
![]()
次,那么只要说明有
![]()
使得
![]()
,即
![]()
即可,再考虑使
![]()
表达式简单,我们就有了如下的证明。
证明:设全体奇素数为
![]()
,并令
![]()
。
![]()
(我们只要说明全体素数的倒数和发散即可,这是个经典结论,我们在后面给出证明。)故存在
![]()
,
![]()
,令
![]()
,并取
![]()
,则
![]()
的最大素因子不超过
![]()
,从而
![]()
足够大时,
于是
![]()
足够大时,
![]()
均合乎要求,证毕。
运用这种换元分解思想的一道经典题目是:称正整数
为
平方数,若
。求证:对任意
,存在连续6个
平方数
全体素数倒数和发散的证明:(记得第一次见到这个证明是lwg老师讲的,当时简直惊了...)
![]()
,等式两边取对数,得:
熟知调和级数发散,则全体素数倒数和发散。
3.4
![]()
型素数有无穷多
我们先给出一个引理:
为正整数,
为素数,且存在整数
,则
,或
引理的证明:若存在
![]()
,
![]()
,由2.5知
![]()
;若对
![]()
的任意真因子
![]()
,
![]()
不是
![]()
的倍数,则
![]()
模
![]()
的阶为
![]()
,结合费马小定理有
![]()
,即
![]()
,故结论成立。
原题的证明:如果
![]()
的素因子集合是有限集,设其中元素为
![]()
,但
![]()
与
![]()
均互素,矛盾。
那么
![]()
为无限集,由引理,其中的每个素数都是模
![]()
余1的,于是我们证明了结论。
3.5
![]()
为素数,则模
![]()
的原根存在
证明:
![]()
模
![]()
下恰有
![]()
个根
![]()
,由拉格朗日定理,
![]()
在模
![]()
下的根少于
![]()
个,则存在整数
![]()
,由3.4中的引理知
![]()
,即
![]()
为模
![]()
的原根。
3.6(2012CMO)给定素数
![]()
,将
![]()
排成一个
![]()
的矩阵
![]()
,一次操作是指选择
![]()
的一行或者一列,将其中每个数加1或者减1。若能经过有限次操作将
![]()
变成0矩阵,则称
![]()
是一个好矩阵,求好矩阵的个数。
这大概是当年培训时唯一记住的题目...
解:将好矩阵所有数减1,得到的还是好矩阵,我们称这样的矩阵为新好矩阵。我们可以交换新好矩阵的行,使得第一行中的数满足
![]()
,第一列中的数满足
![]()
,易知经此变换后的矩阵还是新好矩阵,将其记为
![]()
。
设
![]()
的
![]()
行
![]()
列处的数为
![]()
。设把
![]()
变为0矩阵的操作总共使第
![]()
行加
![]()
减
![]()
,第
![]()
列加
![]()
减
![]()
(
![]()
),则由
![]()
,有
![]()
。对任意的
![]()
,
![]()
,
![]()
,
![]()
,从而
![]()
。
令
![]()
,
则
由分圆多项式不可约,知
从而
![]()
的第一行和第一列中元素只有两种可能的情况,对每种情况,任意交换行和列共可以得到
![]()
个新好矩阵,于是新好矩阵共
![]()
个,好矩阵个数与新好矩阵个数相同,也为
![]()
个。
就写到这里吧...席格蒙迪什么的就不写了...
参考资料
【图片】简谈分圆多项式【数论吧】_百度贴吧tieba.baidu.com
洛绫:分圆多项式:一些杂货(1)zhuanlan.zhihu.com