多项式除以多项式例题讲解_分圆多项式的简单性质与应用

本文介绍了分圆多项式的基本概念,包括本原单位根和相关性质,并详细阐述了分圆多项式的若干性质,如对任意正整数的性质证明。此外,文章还探讨了分圆多项式在因式分解、数论问题解决中的应用,通过实例展示了其在解决特定数学问题中的重要作用。
摘要由CSDN通过智能技术生成

这两天连着看到了几道可以用分圆多项式来做的题目,闲得无聊的我决定整理一下我还记得的分圆多项式的内容。由于我记得的都比较简单,所以这篇文章应该还蛮友好的(有一点多项式和数论基础就可以了)...

PART 1 分圆多项式的介绍

1.1 本原单位根

要说分圆多项式,当然要先说本原单位根。我们都知道,

是个
次单位根,它可以生成
的全部复根:
。换句话说,对
都有
。对于
次单位根
,定义它的阶
满足
的最小正整数
,那么有
,且对任意的
次单位根,它的阶必然能整除

我们称阶为

次单位根为
次本原单位根。
次本原单位根当然(一般)不止
一个,事实上,若
是与
互素的正整数,则
,从而
为一个
次本原单位根。

于是我们立刻得到:

次本原单位根有

在这给出一个有趣的结论:给定正整数n,所有n次本原单位根之和恰为n的莫比乌斯函数

1.2 分圆多项式

给定正整数

,我们定义
级分圆多项式
,其中
是全部
次本原单位根。则
是一个
次多项式,它的一些简单性质将在下一节进行介绍。下面是几个例子:

PART 2 分圆多项式的一些简单性质

2.1 对任意正整数n,

证明:令

,则

一方面,对

,
次本原单位根且
,从而
是右边某一项的因式,于是我们得到了

另一方面,若

既为
次本原单位根,又为
次本原单位根,则
,进而由本原单位根定义有
,则
。那么
时,
。对
的任意因子
,故

又这两个多项式都是首一的,从而我们证明了

一个显然的推论是:

,根据莫比乌斯反演公式,还可以得到:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值