多项式除以多项式例题讲解_分圆多项式的简单性质与应用

本文介绍了分圆多项式的基本概念,包括本原单位根和相关性质,并详细阐述了分圆多项式的若干性质,如对任意正整数的性质证明。此外,文章还探讨了分圆多项式在因式分解、数论问题解决中的应用,通过实例展示了其在解决特定数学问题中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这两天连着看到了几道可以用分圆多项式来做的题目,闲得无聊的我决定整理一下我还记得的分圆多项式的内容。由于我记得的都比较简单,所以这篇文章应该还蛮友好的(有一点多项式和数论基础就可以了)...

PART 1 分圆多项式的介绍

1.1 本原单位根

要说分圆多项式,当然要先说本原单位根。我们都知道,

是个
次单位根,它可以生成
的全部复根:
。换句话说,对
都有
。对于
次单位根
,定义它的阶
满足
的最小正整数
,那么有
,且对任意的
次单位根,它的阶必然能整除

我们称阶为

次单位根为
次本原单位根。
次本原单位根当然(一般)不止
一个,事实上,若
是与
互素的正整数,则
,从而
为一个
次本原单位根。

于是我们立刻得到:

次本原单位根有

在这给出一个有趣的结论:给定正整数n,所有n次本原单位根之和恰为n的莫比乌斯函数

1.2 分圆多项式

给定正整数

,我们定义
级分圆多项式
,其中
是全部
次本原单位根。则
是一个
次多项式,它的一些简单性质将在下一节进行介绍。下面是几个例子:

PART 2 分圆多项式的一些简单性质

2.1 对任意正整数n,

证明:令

,则

一方面,对

,
次本原单位根且
,从而
是右边某一项的因式,于是我们得到了

另一方面,若

既为
次本原单位根,又为
次本原单位根,则
,进而由本原单位根定义有
,则
。那么
时,
。对
的任意因子
,故

又这两个多项式都是首一的,从而我们证明了

一个显然的推论是:

,根据莫比乌斯反演公式,还可以得到:

2.2 对任意正整数

证明:

时,

假设命题对一切小于

的正整数成立,则对于
阶分圆多项式:

由2.1,

,由归纳假设和高斯引理知
为本原多项式,进而

2.3 对任意正整数

,
中的不可约多项式

证明:设

,其中
为首一整系数多项式,
非常数且在
上不可约。

为素数时,这个结论是相当经典的,可以变形后使用爱森斯坦判别法。对于一般的情况,我们证明的思路是说明
的每个根都是
的根,从而得到结论。

的一个根
和与
互素的素数
,则
或者
的根

假设

的根,则
的公共根,则

,则

再设

,则
,这说明
有重根,这与
矛盾,于是
的根。

那么我们容易知道:对任意与

互素的正整数
的根(用标准分解即可说明,其实这才是最初考虑取
的原因)。从而
的根都是
的根,于是
中的不可约多项式。

2.4

为素数,且
,则

证明:对任意的

次本原单位根
,
显然是
次本原单位根

对任意

次本原单位根
,由
也是
次本原单位根

那么,

的任意根都是
的根。

比较次数:

即可得到

类似地,易证对任意正整数

,
,这将在2.7中用到。

2.5

为正整数,
的真因子,
为素数。若存在整数
,满足
,则

证明:由

的真因子知
,从而

,则

于是

,结论成立。

2.6

为素数,则
,否则

为素数时,
,结论成立。

利用

,用数学归纳法即可证明结论。

结合

,容易计算

2.7若存在整数

满足
,则
为一个素数幂

证明:

时,由2.6可知结论成立,以下设

取素数

,设
,其中
,下面只要证明
即可。

先说明

时,结论平凡

时,

进而有

,同理

,不妨设
,并记
,则

存在

的因子
,
的真因子,由2.5知
,矛盾。

,则
为素数幂,结论成立。

PART 3 分圆多项式的几个应用

3.1 因式分解

不多解释,毕竟我第一次看到分圆多项式就是在初中小蓝皮因式分解上,所以单拿出来写一下...

3.2

为互素的正整数
,求一切

解:令

,则

显然

的根,于是

从而容易知道

进而

为全部所求。

3.3 求证:存在无穷多正整数

的最大素因子小于

处理这类问题的常见思路是把不能分解的东西作换元,使之能再分下去,而分圆多项式则是一个相当好的工具,它能分得足够细。只要说明存在无穷多正整数

的最大素因子小于
即可。令
,
,右边乘积中最高次多项式为
次,那么只要说明有
使得
,即
即可,再考虑使
表达式简单,我们就有了如下的证明。

证明:设全体奇素数为

,并令

(我们只要说明全体素数的倒数和发散即可,这是个经典结论,我们在后面给出证明。)故存在
,
,令
,并取

,则
的最大素因子不超过

,从而
足够大时,

于是

足够大时,
均合乎要求,证毕。

运用这种换元分解思想的一道经典题目是:称正整数

平方数,若
。求证:对任意
,存在连续6个
平方数

全体素数倒数和发散的证明:(记得第一次见到这个证明是lwg老师讲的,当时简直惊了...)

,等式两边取对数,得:

熟知调和级数发散,则全体素数倒数和发散。

3.4

型素数有无穷多

我们先给出一个引理:

为正整数,
为素数,且存在整数
,则
,或

引理的证明:若存在

,
,由2.5知
;若对
的任意真因子
,
不是
的倍数,则
的阶为
,结合费马小定理有
,即
,故结论成立。

原题的证明:如果

的素因子集合是有限集,设其中元素为
,但
均互素,矛盾。

那么

为无限集,由引理,其中的每个素数都是模
余1的,于是我们证明了结论。

3.5

为素数,则模
的原根存在

证明:

下恰有
个根
,由拉格朗日定理,
在模
下的根少于
个,则存在整数
,由3.4中的引理知
,即
为模
的原根。

3.6(2012CMO)给定素数

,将
排成一个
的矩阵
,一次操作是指选择
的一行或者一列,将其中每个数加1或者减1。若能经过有限次操作将
变成0矩阵,则称
是一个好矩阵,求好矩阵的个数。

这大概是当年培训时唯一记住的题目...

解:将好矩阵所有数减1,得到的还是好矩阵,我们称这样的矩阵为新好矩阵。我们可以交换新好矩阵的行,使得第一行中的数满足

,第一列中的数满足
,易知经此变换后的矩阵还是新好矩阵,将其记为

列处的数为
。设把
变为0矩阵的操作总共使第
行加
,第
列加
(
),则由
,有
。对任意的
,

,
,
,从而

,

由分圆多项式不可约,知

从而

的第一行和第一列中元素只有两种可能的情况,对每种情况,任意交换行和列共可以得到
个新好矩阵,于是新好矩阵共
个,好矩阵个数与新好矩阵个数相同,也为
个。

就写到这里吧...席格蒙迪什么的就不写了...


参考资料

【图片】简谈分圆多项式【数论吧】_百度贴吧​tieba.baidu.com
1bef0ca5a8b7801080fb50d2a081731d.png
洛绫:分圆多项式:一些杂货(1)​zhuanlan.zhihu.com
62600d89e30724fba49410a6d0e0c510.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值