Python大本营每日一课
大家好,本期7日专栏内容,营长将为大家分享新的内容知识,“数据分析”,营长邀请的是宿永杰,某知名互联网公司数据挖掘工程师,小伙伴们别忘记打卡哦。
数据分析思维才是你的核心竞争力(开篇导读)
DAY01
随着大数据技术在各行各业应用的越来越广,数据驱动智能产品和精细化运营已经成为企业经营的制胜法宝,相应地,数据分析师这个岗位也越来越受到关注。后互联网时代,企业的数字化转型已经成为必由之路,企业由数据驱动,工作需要数据思维,结论先行,数据跟上,人人都是数据分析师!
当餐馆扫码下单、机器人送餐、刷脸支付完成时,当机场、火车站安检开了人脸识别通道,当 ETC 已经在取代人工岗亭,当智能客服取代了人工客服,甚至连外卖小哥也面临无人配送的挑战时……
信息革命已经来了,数据驱动的产品越来越多智能化,智能设备逐步取代人类,成为我们社会的一个组成部分。在这样的一个大趋势下,未来每一个人的工作都会与智能化的设备有交集,而这所谓的“交集”正是由数据组成的,数据成为了人与设备之间的沟通的桥梁。而各行业的互联网化也会让业务数据开始增多,更多的业务决策将依赖于数据。
而作为与数据打交道最密切的职业——数据分析师,也将迎来了黄金就业期。据艾瑞研究统计,在过去的两年中,由于各行各业新聘用了 80 万名数据科学家,数据科学岗位的短缺问题已大大缓解;但是今天市场上仍然有成千上万的空缺职位,其中大部分在美国和中国。
通过搜索 BOSS 直聘和领英,发现其上面有上有 10 万 + 个数据分析师职位空缺,其中绝大部分是互联网行业的需求。值得注意的是,虽然国内现有很多数据分析师员工,但其数量占比依旧很少,职位空缺却占到了市场的 50% 之多。
数据分析师的岗位,越来越受到大家的关注。而且越来越多的小伙伴也转行做数据分析,因为大家不仅看到的是未来数据分析的发展前景,而且数据分析师的薪资待遇也很不错,未来还存在巨大的潜力等待更多人来挖掘。
企业大量需求的背后,对数据分析人才的要求也在不断提高,根据掌握技能和解决问题的能力,我们把数据分析师大体分为以下 3 类:
对于求职的数据分析师来说,明明按照招聘要求认真写的简历,精通 SQL、Python,学历、技能和工作年限等都比较吻合,眼看着非常和自己匹配的岗位,可投递过去要么石沉大海要么一面挂无缘二面,这是为什么呢?
我咨询了几个数据分析招聘负责人,得到的回答基本一致,工具的使用是他们最基本的要求,更看重的是候选人的分析思维和综合素质。
每当面试受挫,我相信很多人的行动就是开始找网课视频,然后学习,花费时间多,结果也不是很好。因为网课视频都是教你工具怎么使用,但没办法帮你摆脱”人肉取数机“,真正能从业务思维角度带你做数据分析的,少之又少。
通过 NLP 技术,对上千篇数据分析面经进行信息抽取和统计提炼出来的高频考点。一般情况下,普通面试者可以通过网络阅读到别人写的面经,但是这些面经缺少准确的知识点拆解和完整的答题思路,如果面试者花费大量的时间和精力去检索答案,显然对面试是得不偿失的。
面试题虽然千人千面,无数种问法,其实万变不离其宗,如果掌握了数据分析的核心模型和方法论,遇到问题就会回答的有理有据,让面试官眼前一亮。
因此,本专栏通过大数据分析方法,直接切中数据分析师面试的高频考点,通过理论模型 + 企业真题的学习实践,各个击破知识点,扫清面试路上的拦路虎,助力求职者早日拿到心仪的 Offer。
本专栏包括:逻辑推理篇、思维模型篇、指标搭建篇、业务专题篇和 SQL 实战篇共 5 个篇章:
通过这些内容的学习,相信你可以在面试中回答的让面试官眼前一亮,掌握了这些内容,更可以提升你的业务分析思维,让你终身受用。
互联网行业还在蓬勃发展,未来数据分析师将扮演越来越重要的角色,越来越多的公司和业务决策需要数据分析的支持,数据分析师也将成为一个具有挑战的职位,除了掌握核心技能,对于分析思维和行业知识的了解将成为大多数职业发展路上的拦路虎。
对于任何行业、任何一个人来说,未来与数据打交道的频率和机会只会越来越多,参与的越来越深,而数据分析思维可以说是未来任何工作中最核心的竞争力之一。
率和机会只会越来越多,参与的越来越深,而数据分析思维可以说是未来任何工作中最核心的竞争力之一。
本期专栏将对数据分析思维从理论 + 实战方面进行讲述,助你快速拿到 Offer,在实际工作中,积累更多的业务经验和行业知识。
明日分享预告:数据分析最爱用的估算法:费米估计
本期专栏内容均来自GitChat《数据分析面试剖析24讲》专栏内容,作者:宿永杰,某著名互联网公司数据挖掘工程师,如需了解专栏详情,可扫描下方二维码。