[动态规划]第一章

引入-硬币问题

你有无限多的硬币,面值为 1,5,10,20,50,100 ,现在有一个待付款金额 v ,请问你最少要用多少枚硬币才能凑出金额

显然,对于这个问题,我们硬币的面值和我们人民币的面值是一样的,根据我们的生活经验,我们需要尽量用面值大的,面值大的无法满足了再用面值较小的,即一个贪心做法

例如:w=6x100+1x50+1x10+1x5+1x1

然而,这样做一定是最优的吗?

考虑一组新的硬币面值,1,5,11 和一个新的 w=15 ,按照我们刚刚的策略,我们会选用 1x11+4x1 这样的组合,一共使用五枚硬币完成我们的支付,然而,一个很显然的策略 3x5 ,就可以只使用三枚硬币就完成我们的支付

这就是我们贪心策略的不足之处了,我们在选择面值为 11 的硬币的时候,并不知道我们在 w=4 的情况下需要四枚硬币才能完成我们的支付,只是鼠目寸光地尽可能降低我们支付的金额

那怎么样能避免我们贪心中的鼠目寸光呢?

强行枚举我们使用的硬币?复杂度是指数级的,在 w 较大的时候难以接受

我们观察一下性质,在 w=15 时,如果我们取了 11 ,则我们需要面对 w=4 的情况,如果我们取了 5 ,则我们需要面对 w=10 的情况,如果我们取了 1 ,则我们需要面对 w=14

记凑出 w 需要的最少的硬币数量为 f(w) ,我们把上述三种情况的方程写下来

三种情况:
f(w)=f(w-1)+1
f(w)=f(w-5)+1
f(w)=f(w-11)+1

其中,后面的 +1 代表我们增加了一枚硬币

很显然可以看出,f(w) 只与 f(w-1), f(w-5), f(w-11) 有关,在这三者中,由于我们要最小化,硬币的数量,因此,我们得到 f(w)=min{f(w-1),f(w-5),f(w-11)}+1

推广到硬币面值为 a1,a2,a3,…,an 的场景, f(w)=min{f(w-ai)}+1

这个做法和贪心的区别在于,贪心会选择当前能够接受的,面值最大的硬币,而我们现在的做法,则会对选用所有硬币的方案都进行比较,在里面找出最优解

可以看出,求解 f(w-ai) 和求解,f(w)=min{f(w-ai)}+1 的过程是一模一样的,不过 f(w-ai) 问题的规模更小,这个时候,我们称 f(w-ai)f(w)子问题

上述问题的求解方法,就是我们常说的动态规划


正题-动态规划(DP, Dynamic Programming)

动态规划,就是将一个问题拆成几个子问题,分别求解这些子问题,即可推断出大问题的解。那么,在什么情况下,我们可以使用动态规划进行问题的求解呢?

无后效性

  • 已经求解的子问题,不会再受到后续决策的影响

    例如上题中,一旦 f(n) 确定,我们如何凑出 f(n) 就再也用不着考虑了

    要求出 f(15),只需要知道 f(14),f(10),f(4) 的值,而 f(14),f(10),f(4) 是如何算出来的,对之后的问题没有影响。未来与过去无关,这就是无后效性

    其严格定义是:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响

最优子结构

  • 大问题的最优解可以由小问题的最优解推出

    例如上题中,我们对 f(n) 的定义是,凑出 n 需要的最少的硬币数量,在定义中,我们已经蕴含了最优

(可选)子问题重叠

  • 如果有大量的重叠子问题,我们可以用空间将这些子问题的解存储下来,避免重复求解相同的子问题,从而提升效率。

    例如在上题中,我们可以把 f(10) 的值存下来,以供求解 f(11),(15),(21) 的时候使用,这样就不用多次求解 f(10)


应用-DAG最短路

给定一个城市的地图,所有的道路都是单行道,而且不会构成环。每条道路都有过路费,求从 S 点到 T 点花费的最少费用。

思考:能不能使用动态规划求解?

S 点到某个点 P 的最少费用为

想要到达点 T ,要么经过点 C ,要么经过点 D
所以:

	f(T)=min(f(c)+20,f(D)+10)
  • 回过头看是否满足我们 DP 所要求的两个性质:

    1. 无后效性:对于某个点,一旦 确定,以后就不关心怎么去的,且 的确定不会对点 P 之前的点的 f(X) 有影响(如果有影响,则图中存在,与题干中有向无环图的定义相悖)

    2. 最优子结构:对于点,我们当然只关心到的最小费用,即 ,并以此来解决之后的问题

  • 这两个性质都满足,我们可以使用dp进行求解,状态我们已经设计出来了,而转移方程如下:

	f(P)=min {f(R) + w(R->P)}

其中,R 为有路通到 P 的所有的点,w(R->P)RP 的过路费

  • DP为什么会很大程度上地优于搜索?

    DP 枚举的是所有有希望成为答案的解,而搜索枚举的是所有可能的解,例如在上文的硬币问题中,
    f(15)=2x5+5x1就从来没有被考虑过,因为这不能从任意一个子问题 f(4)f(10)f(14) 转移过来

  • DP的核心

    尽可能缩小可能解的空间

  • DP的操作过程

    大事化小,小事化了

    将一个大问题转化成几个小问题;求解小问题;推出大问题的解

    一般来讲,我们在使用DP求解问题时,分为以下三个步骤:

    1. 将原问题划分为若干阶段,每个阶段对应若干个子问题,提取这些子问题的特征(称之为状态
    2. 寻找每一个状态的可能决策,或者说是各状态间的相互转移方式(用数学的语言描述就是状态转移方程
    3. 按顺序求解每一个阶段的问题

    • 以硬币问题为例

      状态就是我们设计的,凑出 w 需要的最少的硬币数量 f(w)
      转移方程,或者说决策,就是我们在推广到硬币面值为 a1 、a2、a3 …an 的场景时给出的方程 f(w)=min { f(w-ai) }+1

  • 而按顺序求解问题时,我们一般希望,求解到某个 f(w) 时,它所有的子问题已经求解完毕,对于本题而
    言,我们 从小到大枚举 w 即可保证解决该问题


练习题

[B2064] 斐波那契数列

传送门

题目描述

斐波那契数列是指这样的数列:数列的第一个和第二个数都为 1 1 1,接下来每个数都等于前面 2 2 2 个数之和。

给出一个正整数 a a a,要求斐波那契数列中第 a a a 个数是多少。

输入格式

1 1 1 行是测试数据的组数 n n n,后面跟着 n n n 行输入。每组测试数据占 1 1 1 行,包括一个正整数 a a a 1 ≤ a ≤ 30 1 \le a \le 30 1a30)。

输出格式

输出有 n n n 行,每行输出对应一个输入。输出应是一个正整数,为斐波那契数列中第 a a a 个数的大小。

Code

#include <bits/stdc++.h>
using namespace std;

void work()
{
    int n;
    cin >> n;
    int dp[n+10];
    dp[1]=dp[2]=1;
    for (int i=3;i<=n;i++)
    {
        dp[i]=dp[i-1]+dp[i-2];
    }
    cout << dp[i] << endl;
}
signed main()
{
    int T;
    cin >> T;
    while (T--)
    {
        work();
    }
    return 0;
}


传送门

[洛谷]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值