C++是一种功能强大的编程语言,广泛应用于系统软件、游戏开发、嵌入式系统、高性能计算等领域。在图论中,连通图是一个重要的概念,它指的是图中任意两个顶点之间都存在至少一条路径的图。
连通图的概念
定义
在无向图中,如果任意两个顶点之间都存在一条路径,那么这个图被称为连通图。在有向图中,如果任意两个顶点之间都存在一条有向路径,则称为强连通图。
属性
- 连通性:任意两个顶点之间都是连通的。
- 顶点数:连通图至少包含两个顶点。
- 边数:在无向图中,边数至少为顶点数减一(n-1),以保证连通性。
类型
- 完全图:图中的每对顶点之间都有边相连。
- 生成树:连通图中的最小连通子图,包含所有顶点,且边数为顶点数减一。
- 连通分量:在非连通图中,最大的连通子图称为连通分量。
思路
我们可以从任意一点(我这里用的是1)用DFS或BFS遍历图,遍历到点 i i i的时候将 v i s [ i ] vis[i] vis[i]设为 t r u e true true,在遍历之后检查是否所有的 v i s [ i ] ( i = = 1 , 2 , . . . , n ) vis[i](i==1,2,...,n) vis[i](i==1,2,...,n)都为1= t r u e true true,这样就表示所有点都被遍历过了,也就是整张图都连通。
实现
以下是使用邻接表(BFS)实现连通图检测的一个简单示例:
//bfs实现判断连通块
//设一共有n个点,编号为1~n
//vis[i]表示之前是否遍历过点i
void bfs()
{
memset(vis,false,sizeof(vis));
queue<int> q;
q.push(1);
vis[1]=false;
while (!q.empty())
{
int u=q.front();
q.pop();
int len=g[u].size();
for (int i=0;i<len;i++)
{
int v=g[u][i].first;
int w=g[u][i].second;
if (vis[v]) continue;
vis[v]=true;
}
}
}
bool check()
{
bfs();
for (int i=1;i<=n;i++) if (!vis[i]) return false; //要是bfs没有遍历到这个点,说明图并不连通
return true;
}
当然,我们也可以用DFS解决这个问题
//dfs实现判断连通块
//设一共有n个点,编号为1~n
//vis[i]表示之前是否遍历过点i
void dfs(int u)
{
int len=g[u].size();
for (int i=0;i<len;i++)
{
int v=g[u][i].first;
int w=g[u][i].second;
if (vis[v]) continue;
vis[v]=1;
dfs(v);
}
}
bool check()
{
memset(vis,false,sizeof(vis));
dfs(1);
for (int i=1;i<=n;i++) if (!vis[i]) return false; //要是dfs没有遍历到这个点,说明图并不连通
return true;
}
总结
连通图是图论中的一个重要概念,它在网络、通信、交通等领域有着广泛的应用。在C++中,我们可以通过邻接矩阵、邻接表等数据结构来实现图的存储和操作,并利用深度优先搜索(DFS)或广度优先搜索(BFS)等算法来检测图的连通性。上述代码示例展示了如何使用邻接表和BFS来检测一个图是否是连通的。