图论初步-连通图

C++是一种功能强大的编程语言,广泛应用于系统软件、游戏开发、嵌入式系统、高性能计算等领域。在图论中,连通图是一个重要的概念,它指的是图中任意两个顶点之间都存在至少一条路径的图。

连通图的概念

定义

在无向图中,如果任意两个顶点之间都存在一条路径,那么这个图被称为连通图。在有向图中,如果任意两个顶点之间都存在一条有向路径,则称为强连通图

属性

  • 连通性:任意两个顶点之间都是连通的。
  • 顶点数:连通图至少包含两个顶点。
  • 边数:在无向图中,边数至少为顶点数减一(n-1),以保证连通性。

类型

  • 完全图:图中的每对顶点之间都有边相连。
  • 生成树:连通图中的最小连通子图,包含所有顶点,且边数为顶点数减一。
  • 连通分量:在非连通图中,最大的连通子图称为连通分量。

思路

我们可以从任意一点(我这里用的是1)用DFSBFS遍历图,遍历到点 i i i的时候将 v i s [ i ] vis[i] vis[i]设为 t r u e true true,在遍历之后检查是否所有 v i s [ i ] ( i = = 1 , 2 , . . . , n ) vis[i](i==1,2,...,n) vis[i](i==1,2,...,n)都为1= t r u e true true,这样就表示所有点都被遍历过了,也就是整张图都连通

实现

以下是使用邻接表(BFS)实现连通图检测的一个简单示例:

//bfs实现判断连通块 
//设一共有n个点,编号为1~n
//vis[i]表示之前是否遍历过点i 
void bfs()
{
	memset(vis,false,sizeof(vis));
	queue<int> q;
	q.push(1);
	vis[1]=false;
	while (!q.empty())
	{
		int u=q.front();
		q.pop();
		int len=g[u].size();
		for (int i=0;i<len;i++)
		{
			int v=g[u][i].first;
			int w=g[u][i].second;
			if (vis[v]) continue;
			vis[v]=true;
		}
	}
}
bool check()
{
	bfs(); 
	for (int i=1;i<=n;i++) if (!vis[i]) return false; //要是bfs没有遍历到这个点,说明图并不连通 
	return true;
}

当然,我们也可以用DFS解决这个问题

//dfs实现判断连通块 
//设一共有n个点,编号为1~n
//vis[i]表示之前是否遍历过点i 
void dfs(int u)
{
	int len=g[u].size();
	for (int i=0;i<len;i++)
	{
		int v=g[u][i].first;
		int w=g[u][i].second;
		if (vis[v]) continue;
		vis[v]=1;
		dfs(v); 
	}
}
bool check()
{
	memset(vis,false,sizeof(vis));
	dfs(1); 
	for (int i=1;i<=n;i++) if (!vis[i]) return false; //要是dfs没有遍历到这个点,说明图并不连通 
	return true;
}

总结

连通图是图论中的一个重要概念,它在网络、通信、交通等领域有着广泛的应用。在C++中,我们可以通过邻接矩阵、邻接表等数据结构来实现图的存储和操作,并利用深度优先搜索(DFS)或广度优先搜索(BFS)等算法来检测图的连通性。上述代码示例展示了如何使用邻接表和BFS来检测一个图是否是连通的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值