辗转相除法Python实现

辗转相除法

无聊写的= =

def Euclidean(a, b):
    max = a if a > b else b
    min = b if a > b else a
    if max % min == 0:
        return min
    else:
        return Euclidean(min, max-min*int(max/min))

辗转相除法(欧几里德算法)是一种求解两个整数的最大公约数的方法。在Python中,我们可以使用辗转相除法实现。根据引用中的代码,我们可以定义一个函数来实现辗转相除法,并接收两个整数作为参数,返回它们的最大公约数。 首先,定义一个函数`divisor`,该函数使用一个循环来进行辗转相除操作,直到余数为0。在每次循环中,我们将除数赋值给被除数,将余数赋值给除数。最后,返回除数作为最大公约数。 接下来,定义一个函数`judge`,该函数用于判断输入的两个整数的大小关系,并调用`divisor`函数来计算最大公约数。如果第一个整数大于第二个整数,则直接调用`divisor`函数传入这两个整数作为参数;否则,交换这两个整数的值,然后再调用`divisor`函数传入交换后的整数作为参数。 最后,我们可以在主函数中调用`judge`函数,传入需要求解最大公约数的两个整数,并将结果打印出来。 参考引用中的代码,以下是Python实现辗转相除法求解最大公约数的示例代码: ```python def divisor(n, m): while m != 0: c = n // m # 商数 d = n % m # 余数 n = m # 替换除数 m = d # 替换被除数 return n def judge(n, m): if n > m: result = divisor(n, m) else: result = divisor(m, n) return result num1 = int(input("请输入一个整数: ")) num2 = int(input("请输入一个整数: ")) gcd = judge(num1, num2) print("这两个整数的最大公约数为:", gcd) ``` 这段代码中,我们首先定义了`divisor`函数来实现辗转相除法。然后,定义了`judge`函数来判断输入整数的大小关系,并调用`divisor`函数来获取最大公约数。最后,在主函数中接收用户输入的两个整数,并调用`judge`函数来计算它们的最大公约数,并将结果打印出来。 通过运行以上代码,您可以得到两个整数的最大公约数。在这个例子中,输入100和18,得到的最大公约数是2,与引用中的结果一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值