62. 不同路径
一个机器人位于一个
m x n
**网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
输入:m = 3, n = 7
输出:28
动规五部曲:
1. 确定dp数组及其下表含义
dp[i][j]表示从(0,0)到(i,j)的路径总数
2. 确定递归公式
dp[i][j]只能由左边dp[i][j-1]上边dp[i-1][j]所确定
dp[i][j]=dp[i-1][j]+dp[i][j-1]
3. dp数组初始化
一行和一列的时候都只有1步到达,所以dp[i][0]=1,dp[0][j]=1
4. 确定遍历顺序
从上到下,从左到右
5. 举例推导dp数组
m=3 n=3
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp=new int[m][n];
for(int i=0;i<m;i++) dp[i][0]=1;
for(int j=0;j<n;j++) dp[0][j]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
63. 不同路径 II
一个机器人位于一个
m x n
网格的左上角 (起始点在下图中标记为 “Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用
1
和0
来表示。
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
动规五部曲:
1. 确定dp数组以及下标含义
dp[i][j]表示从(0,0)到[i,j]的总路径
2. 确定递归公式
和上一题类似dp[i][j]=dp[i-1][j]+dp[i][j-1]
但是需要考虑到遇到障碍物的时候跳过这次循环即可
3. dp数组初始化
需要多考虑一个横向和竖向存在障碍障碍物的情况,存在障碍物就不可以通过
for(int i=0;i<m&&obstacleGrid[i][0]==0;i++) dp[i][0]=1; for(int j=0;j<n&&obstacleGrid[0][j]==0;j++) dp[0][j]=1;
4. 数组遍历方向
依旧从上到下,从左到右
5. 举例推导递归数组
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
int[][] dp=new int[m][n];
//如果障碍我在起点或者终点
if(obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1){
return 0;
}
for(int i=0;i<m&&obstacleGrid[i][0]==0;i++) dp[i][0]=1;
for(int j=0;j<n&&obstacleGrid[0][j]==0;j++) dp[0][j]=1;
for(int i=1;i<m;i++){
for(int j=1;j<n;j++){
//如果遇到障碍物跳过本次循环
if(obstacleGrid[i][j]==1){
continue;
}
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}