代码随想录算法训练营第三十九天|62.不同路径 63. 不同路径 II

62.不同路径

链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

细节:

数组变成二维的了,在原理上和爬楼梯比较像
        得出某个格子从start的路径,是从上方的格子和左方的格子得到的,这就是二维意义上的
        爬楼梯某层的方法是从前一层到达和从前两层到达得到的,这就是一维意义上的

        爬楼梯的初始化是一个点,初始化第一层台阶和第二层台阶
        爬格子的初始化是一条线,初始化上边和下边

1、定义dp数组的含义

        因为格子的状态是二维的,所以每个格子的位置是【i,j】,那么dp[i][j]就代表,在从start到【i,j】位置上的路径为dp[i][j]        

2、状态递推公式

        那么dp[i][j] 可以从两种途径获得,一种是从上方,dp[i-1,j];另一种是从左方,dp[i,j-1]

        所以 dp[i][j] = dp[i-1][j] + dp[i][j-1]

        注意区分这里是记录到达这个格子的不同路径,而不是记录到达这个格子的不同步数,这个要区分清楚

3、初始化

        对于初始化,应该初始化这个地图的上边和下边,这两边是没有办法通过递推公式获取到,那为什么要复制1呢,因为从start到达上方和下方的格子都只是只有一种情况,题目要求只能向上和向下,没有其他路径可以到达        

4、遍历方式

        因为是获取上方和下方的结果得到当前结果,所以只能是从左向右遍历,从上向下遍历

class Solution {
    public int uniquePaths(int m, int n) {
 
        // 定义dp数组
        int[][] dp = new int[m][n];
 
        // 初始化数组
        for (int i = 0; i < m; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n; j++) {
            dp[0][j] = 1;
        }
 
        // 遍历数组,填充dp数组
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
 
        return dp[m-1][n-1];
    }
}

63. 不同路径 II

链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

细节:

这道题目整体上和上面的62差不多,重点是在对障碍物的处理上

边界上的障碍物:

        初始化的时候,如果遇到障碍物,就不能向后初始化了,因为障碍是走不过去的,这是一个重要的细节,这一步错了,后面就完蛋了

起点和终点的障碍物:

        起点或者终点有障碍物的时候,就不能得出最终的路径了,返回0

中间的障碍物:

        中间的障碍物是很好处理的,如果遇到障碍物,就跳过就可以

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        // 获取表格的长度和宽度
        int m = obstacleGrid.length;
        int n = obstacleGrid[0].length;
 
        // 如果障碍在start或者是end上,路径为0,返回0
        if (obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1) {
            return 0;
        }
    
        // 定义dp数组
        int[][] dp = new int[m][n];
 
        // 初始化dp数组,注意边界上的障碍
        for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {
            dp[i][0] = 1;
        }
        for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {
            dp[0][j] = 1;
        }
 
        // 遍历dp数组,填充dp数组
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {        
                if (obstacleGrid[i][j] != 1) {
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        }
 
        return dp[m-1][n-1];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值