给你一个二叉树的根节点 root
,树中每个节点都存放有一个 0
到 9
之间的数字。
每条从根节点到叶节点的路径都代表一个数字:
- 例如,从根节点到叶节点的路径
1 -> 2 -> 3
表示数字123
。
计算从根节点到叶节点生成的 所有数字之和 。
叶节点 是指没有子节点的节点。
示例 1:
输入:root = [1,2,3]
输出:25
解释:
从根到叶子节点路径 1->2 代表数字 12
从根到叶子节点路径 1->3 代表数字 13
因此,数字总和 = 12 + 13 = 25
示例 2:
输入:root = [4,9,0,5,1]
输出:1026
解释:
从根到叶子节点路径 4->9->5 代表数字 495
从根到叶子节点路径 4->9->1 代表数字 491
从根到叶子节点路径 4->0 代表数字 40
因此,数字总和 = 495 + 491 + 40 = 1026
提示:
- 树中节点的数目在范围
[1, 1000]
内 - 0 <=
Node.val
<= 9 - 树的深度不超过
10
思路
本题思路还是比较清晰的,就是做一个普通的DFS搜索,每次将当前节点的val
值加入到一个字符串中(StringBuffer
),当搜到叶子结点时,将当前的StringBuffer
转化成String
,然后再将String
转为int
型,这样,就得到了一条路径的数字num
,然后给总和sum
加上当前路径的num
即可。
另外,在每次DFS退出的时候,也要删除StringBuffer
的最后一位,这样才能生成第二条路径。
代码
public class Solution {
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
StringBuffer tempPath = new StringBuffer();
int sum = 0;
public void dfs(TreeNode root) {
char c = (char)(root.val+'0');
tempPath.append(c);
if(root.left==null&&root.right==null) {
String s = tempPath.toString();
int num = Integer.valueOf(s);
sum += num;
}
if(root.left!=null) {
dfs(root.left);
tempPath.delete(tempPath.length()-1, tempPath.length());
}
if(root.right!=null) {
dfs(root.right);
tempPath.delete(tempPath.length()-1, tempPath.length());
}
}
public int sumNumbers(TreeNode root) {
dfs(root);
return sum;
}
}