我觉得数据工具分两类。
一类是生产工具,给数据开发人员使用,用来处理数据、管理数据、维护任务的。
一类是消费工具,给业务人员使用,用来对数据进行监控、可视化、分析的。
虽然工具很多时候不限制两方同时使用,但因主要的需求方目的和能力不同,工具在设计时的侧重点也各有不同。
没有工具一样可以处理数据,不过有工具可以更有效率更简单的处理数据。工具的好处有以下几点
1.将重复的操作自动化
2.将复杂的操作简单化
3.将脚本的配置可视化
4.将高深的技术封装化
另外还可以将操作流程统一到一个平台上,易学易用。可以保留操作记录,方便管理。可持续优化,每次效率的提升是所有使用者都能受益的。
一般情况下,能工具化的尽量工具化,能统一到一个平台就统一到一个平台。
但是,也要避免工具为王的思想。工具只是解决问题的一种手段,不是解决问题的唯一手段,也不总是最优手段。盲目的工具化,实际上并不一定能提升效率。盲目的统一,也并不能总带来预期的便利。
以下工具体系是我自己用过的工具、见过的工具、基于工作经验觉得需要的工具。每个工具都有自己的应用场景和要解决的问题。
虽然有些工具看似简单,跟报表类似,但因为好用且常用,我觉得也有必要做出来,当做工具。