向量空间

本文介绍了向量空间的基本概念,包括加法和数乘的封闭性,以及子空间的定义。讨论了常见的向量空间如R^n和线性方程组的解空间。内积的概念被提出,它具有对称性、线性和非负性等性质。向量的长度、夹角、正交和正交矩阵的概念也被详细阐述,特别指出正交矩阵的性质及其与规范正交基的关系。
摘要由CSDN通过智能技术生成

向量空间的概念

定义:设 V 是 n 维向量的集合,如果满足

  1. 若 a ∈ V, b ∈ V,则a + b ∈ V .(对加法封闭)
  2. 若 a ∈ V,k∈ R,则ka ∈ V . (对数乘封闭) 那么就称集合 V 为向量空间.

注: 向量空间就是对加法和数乘两种运算封闭的向量组.
定义:如果向量空间 V 的非空子集合 V1对于 V 中所定义的 加法及数乘两种运算封闭,则称 V1是 V 的子空间.
在这里插入图片描述

几个常见的向量空间

  1. n 维向量的全体Rn
    R n = { x = ( x 1 , x 2 , . . . , x n ) T ∣ x 1 , x 2 , . . . , x n ∈ R } R^{n}=\{x=(x_{1},x_{2},...,x_{n})^{T}|x_{1},x_{2},...,x_{n} \in R\} Rn={ x=(x1,x2,...,xn)Tx1,x2,...,xnR}
  2. 齐次线性方程组的解集 S = { x ∣ A x = 0 } S = \{ x | Ax = 0 \} S={ xAx=0}称为齐次 线性方程组的解空间.
  3. 向量组的生成空间
    在这里插入图片描述

在这里插入图片描述

向量空间和向量组的对应关系

在这里插入图片描述
在这里插入图片描述

内积的概念

设向量 a = ( a 1 a 2 . . . a n ) a= \begin{pmatrix} a_{1}\\ a_{2}\\ ...\\ a_{n} \end{pmatrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值