线性代数
关关雎鸠儿
学而不思则罔,思而不学则die
展开
-
二次型
二次型理论起源于解析几何中化二次曲线或 二次曲面方程为标准形问题. 这里首先介绍一些 基本概念,然后讨论如何利用可逆线性变换把一 个二次型化成标准形。二次曲面二次型及其标准形的概念定义含有n个变量x1,x2,...,xnx_{1},x_{2},...,x_{n}x1,x2,...,xn的二次齐次函数f(x1,x2,...,xn)=a11x12+a22x22+...+annxn2...原创 2019-11-06 23:10:54 · 11545 阅读 · 0 评论 -
矩阵的特征值和特征向量
6.1 矩阵的特征向量与特征值犹如世界上每个人都有自己的特点一样,每个矩阵也有其内在的特性。可逆性、秩、初等变换的结果等属于矩阵的代数性质,而特征值、特征向量偏向于反映矩阵的几何特性。A是n阶矩阵,x是n维列向量,则AxAxAx也是n维列向量,当然它己经改变了原来的xxx的大小与方向。有没有一个特别的非零向量xxx,使得向量AxAxAx仅仅使向量x伸长了若干倍而没有改变其方向呢?这个使Ax=...原创 2019-11-04 21:53:06 · 36783 阅读 · 1 评论 -
线性方程与矩阵
n个变量m个方程的线性方程组其中 xj 为自变量,aij 为第i个方程中自变量xj 的系数,bi为第i个方程的常数项.当常数项不全为零时, 称该方程组为非齐次线性方程组; 当常数项全为零时, 称之为齐次线性方程组.非齐次线性方程组齐次方程组以下三种变换统称为线性方程组的初等变换(以 Lj 表示第j个方程):非齐次线性方程组的解有三种可能:1.唯一解;2.无穷多组解;3.无...原创 2019-08-31 11:33:01 · 6312 阅读 · 0 评论 -
行列式
行列式是线性代数的一个重要组成部分.它是研究矩阵、线性方程组、特征多项式的重要工具.本章介绍了行列式的定义、性质及计算方法,最后给出了它的两个应用—秩和克莱姆法则.给定矩阵A,从中选择顶若干行和若干列,将其余的行和列都删去,剩下的元素按原来的排列顺序排成一个矩阵叫做A的子矩阵。在n阶方阵中,把元素aij所在的第i行和第j列划去,留下来的n-1阶矩阵叫做aij的与子矩阵,记作Mij。Mij:...原创 2019-09-01 11:03:37 · 10402 阅读 · 0 评论 -
矩阵代数
矩阵的加减法矩阵的数乘矩阵的乘法定义:设A=(aij)m*s,B=(bij)s*n,那么规定矩阵A与矩阵B的成绩是一个m*n矩阵C=(cij),其中cij=ai1b1j+ai2b2j+…+ainbnj=∑k=1saikbkj\sum_{k=1}^{s}a_{ik}b_{kj}∑k=1saikbkj(i=1,2,…,m;j=1,2,…,n)并把次程纪记作C=AB。注:只有左边...原创 2019-09-01 14:57:19 · 1567 阅读 · 0 评论 -
n维向量
向量的定义由n个数a1, a2, …, an组成的一个有序数组 称为一个n维向量.a=(a1a2...an)a=\begin{pmatrix}a_{1}\\ a_{2}\\ ...\\ a_{n}\end{pmatrix}a=⎝⎜⎜⎛a1a2...an⎠⎟⎟⎞若干个同维数的向量所组成的集合称为向量组.向量就是列矩阵,向量的线性运算与矩阵的线性 运算相同.3(215)...原创 2019-09-10 21:20:11 · 10703 阅读 · 0 评论 -
向量空间
向量空间的概念定义:设 V 是 n 维向量的集合,如果满足若 a ∈ V, b ∈ V,则a + b ∈ V .(对加法封闭)若 a ∈ V,k∈ R,则ka ∈ V . (对数乘封闭) 那么就称集合 V 为向量空间.注: 向量空间就是对加法和数乘两种运算封闭的向量组.定义:如果向量空间 V 的非空子集合 V1对于 V 中所定义的 加法及数乘两种运算封闭,则称 V1是 V 的子空间....原创 2019-09-15 15:37:55 · 9770 阅读 · 0 评论