定义:
图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。与灰度图不同,灰度图为0-255的值。
一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。
全局阈值
Python-OpenCV中提供了阈值(threshold)函数:
ret, dst = cv2.threshold(src, threshold, maxValue, method)
src: 输入图,只能输入单通道图像,通常来说为灰度图
dst: 输出图
thresh: 阈值
maxValue: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
type:二值化操作的类型,包含以下5种类型:
cv2.THRESH_BINARY:大于阈值的像素点的灰度值设定为maxValue(如8位灰度值最大为255),灰度值小于阈值的像素点的灰度值设定为0。
cv2.THRESH_BINARY_INV:大于阈值的像素点的灰度值设定为0,而小于该阈值的设定为maxValue。与cv2.THRESH_BINARY作用相反
cv2.THRE