天然地震数据下载与处理

第一部分:IRIS官网数据

一. 数据下载

IRIS免费下载任意指定地震波并处理 (如汶川地震,鲁甸地震等国内外地震)_哔哩哔哩_bilibili

二. 数据结构

从 IRIS 下载的 SAC(Seismic Analysis Code) 文件包含丰富的地震记录和元数据信息,主要分为以下几个部分:


1. SAC 文件的基本结构

SAC 文件由以下三部分组成:

  1. 头部(Header):包含元数据信息,例如地震事件、台站位置、记录时间、采样率等。
  2. 数据部分(Data):存储地震记录的时间序列数据。
  3. 可选字段:可能包含额外的自定义信息。

2. 头部(Header)信息

头部字段可以分为以下几类:

(1) 事件信息
  • evla:事件纬度(Event Latitude)
  • evlo:事件经度(Event Longitude)
  • evdp:事件深度(Depth in kilometers)
  • o:事件参考时间(Origin Time,通常为相对记录开始的秒数)
(2) 台站信息
  • stla:台站纬度(Station Latitude)
  • stlo:台站经度(Station Longitude)
  • stel:台站海拔(Station Elevation in meters)
  • stdp:台站深度(Station Depth)
(3) 记录信息
  • npts:记录的点数(Number of data points)
  • delta:采样间隔(Sampling Interval in seconds)
  • b:记录起始时间(Beginning time of the record in seconds)
  • e:记录结束时间(End time of the record in seconds)
(4) 到时信息
  • t0t9:自定义标记时间(通常用于存储 P 波、S 波到时等)
  • a:首次波到达时间(First Arrival Time,常用于存储 P 波到时)
  • f:S 波到达时间(通常用于 S 波的时间标记)
(5) 数据信息
  • user0user9:用户自定义字段
  • cmpaz:分量方位角(Component Azimuth)
  • cmpinc:分量倾角(Component Inclination)

3. 数据部分(Data Section)

  • 时间序列记录的波形数据(如地震振幅)。
  • 根据文件类型可能是原始记录、去噪后的数据或某种滤波处理后的结果。

4. 头部字段的提取示例

使用 ObsPy 提取 SAC 文件头部信息的示例代码:

from obspy import read

# 读取 SAC 文件
sac_file = "path_to_your_sac_file.sac"
st = read(sac_file)
tr = st[0]

# 打印 SAC 文件头信息
print(tr.stats.sac)
示例输出
AttribDict({
    'stla': 40.234,
    'stlo': -120.982,
    'stel': 123.0,
    'evla': 38.123,
    'evlo': -122.456,
    'evdp': 12.5,
    'delta': 0.01,
    'npts': 10000,
    'b': 0.0,
    'e': 100.0,
    't0': 12.345,
    'a': 10.567,
    'cmpaz': 90.0,
    'cmpinc': 0.0
})

5. 常见重要字段解释

字段名含义示例值
stla台站纬度40.234
stlo台站经度-120.982
evla事件纬度38.123
evlo事件经度-122.456
evdp事件深度(单位:km)12.5
delta采样间隔(单位:s)0.01
npts数据点数10000
b记录起始时间0.0
t0P 波到时(相对时间)12.345
cmpaz分量方位角(通常为 0、90 或 180)90.0

6. 如何获取所有字段及数据

要完整列出 SAC 文件的所有字段,可以使用以下代码:

from obspy import read

# 读取 SAC 文件
st = read("path_to_your_sac_file.sac")
tr = st[0]

# 打印所有头字段
for key, value in tr.stats.sac.items():
    print(f"{key}: {value}")

7. IRIS 数据可能的特殊信息

从 IRIS 下载的 SAC 文件通常已经包含以下关键字段:

  • 事件信息evla, evlo, evdp, o
  • 台站信息stla, stlo, stel
  • 时间信息delta, b, e
  • 标记时间:常见的是 t0a(用于 P 波到时)

如需进一步分析,可以通过 ObsPy 或其他地震学软件处理这些字段。

第二部分:ISC官网数据

1. 访问ISC官网

  • 官网地址http://www.isc.ac.uk

  • 数据范围: ISC提供全球地震目录数据,包含震源参数(时间、经纬度、深度、震级等)以及台站报告信息。


2. 数据下载步骤

2.1 通过ISC地震目录查询工具
  1. 进入查询页面
    访问 ISC地震目录搜索页面

  2. 设置查询参数

    • 时间范围:输入起始和结束日期(格式:YYYY-MM-DD)。

    • 地理范围:可指定经纬度范围或选择特定区域。

    • 震级范围:设置最小和最大震级(如 M ≥ 5.0)。

    • 其他筛选:深度范围、震源类型(天然地震/人工事件)等。

  3. 提交查询
    点击 Search 获取结果列表。

  4. 导出数据

    • 选择导出格式:CSVText 或 XML

    • 点击 Download 保存数据到本地。

2.2 通过FTP批量下载
  • ISC提供FTP服务用于批量下载历史数据:
    FTP地址: ftp://ftp.isc.ac.uk

    • 目录结构按年份组织,文件格式为纯文本。


3. 数据处理

3.1 数据格式解析
  • CSV/文本文件示例

    EventID,Date,Time,Latitude,Longitude,Depth/km,Magnitude
    12345678,2023-01-01,12:34:56,35.678,-120.456,10.0,5.6

  • 字段说明:事件ID、日期、时间、纬度、经度、深度(km)、震级。

3.2 使用Python处理数据
import pandas as pd

# 读取数据
df = pd.read_csv('isc_earthquakes.csv')

# 筛选深度小于50km且震级≥5.0的地震
filtered_df = df[(df['Depth/km'] < 50) & (df['Magnitude'] >= 5.0)]

# 统计年度地震次数
annual_counts = df['Date'].str[:4].value_counts().sort_index()

# 保存处理后的数据
filtered_df.to_csv('filtered_earthquakes.csv', index=False)
3.3 可视化(Matplotlib示例)
import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
plt.scatter(df['Longitude'], df['Latitude'], s=df['Magnitude']*10, c=df['Depth/km'], alpha=0.5)
plt.colorbar(label='Depth (km)')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.title('Global Earthquake Distribution (ISC Data)')
plt.show()
3.4 使用GIS工具(如QGIS)
  • 导入CSV数据,生成震中分布图。

  • 通过经纬度字段创建点图层,按震级/深度设置符号样式。


4. 注意事项

  1. 数据延迟
    ISC目录数据可能比实时数据延迟数月(需人工审核)。

  2. 引用要求
    使用ISC数据时需注明来源:
    "International Seismological Centre (ISC) On-line Bulletin, Searches"

  3. 高级分析

    • 结合其他数据(如地质构造、人口密度)进行风险分析。

    • 使用地震学工具(如 ObsPy 库)进行波形数据处理。


5. 替代数据源

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值