本文相关学习内容均学习于LeetCode官方网站与题解,主要用于个人记录与学习算法相关题目
题目描述
172. 阶乘后的零
给定一个整数 n ,返回 n! 结果中尾随零的数量。
【提示】 n! = n * (n - 1) * (n - 2) * … * 3 * 2 * 1
题目示例
示例 1:
输入:n = 3
输出:0
解释:3! = 6 ,不含尾随 0
示例 2:
输入:n = 5
输出:1
解释:5! = 120 ,有一个尾随 0
示例 3:
输入:n = 0
输出:0
提示:0 <= n <= 104
进阶:你可以设计并实现对数时间复杂度的算法来解决此问题吗?
题目思路
思路: 一道很有意思的数学分析题目,其实最原始最简单得想法就是基于实际n的大小去计算实际值,最后再计算0的个数。但是毫无疑问的是,当n较大时,n!所计算出来的值一定超过了int,long等整型上限,因此无法计算出正确的结果值。
所以,我们需要在认真思考该问题存在什么特殊的可能求法?
1:什么时候尾随0加1 这个很好理解,每当我们所乘的数是10时,其最后的结果就是result * 10;即尾随零加1
2:如何获取10 这里给我们展示一个示例,在这个示例中,结果存在一个0(通过2*5获得)。而我们在仔细回想一下10所提供的因子:1 2 5 10; 可以发现,获取10 其实就是获取10的质因子:2,5。
5! = 5 * 4 * 3 * 2 * 1 = 120
3:扩大一下n,分解链乘乘子 既然我们要搜索链乘中的2,5个数,不如在取一个更大的n来计算相对应的值看看。通过扩大的n,并将链式乘式每一个包含2的乘子都进行了分解。我们可以发现 2的个数为:7;5的个数为2;。2的个数相对于5的个数远大的多,因此我们计算链乘中分解的5的个数的值即可得到最终的尾随零结果
11! = 1 * 2 * 3 * 4 ( 2 * 2) * 5 * 6 (2 * 3) * 7 * 8 ( 2 * 2 * 2 ) * 9 * 10 ( 2 * 5 ) * 11
11! = 39916800 (!存在2个尾随零)
4:5的个数计算 走到这一步也算是理清了思路了,最后一步怎么计算5的个数呢?毫无疑问:计算5的倍数即可,简单列一下5的数值,我们可以发现 25中存在2个5因子,那么很容易推论出:125 = 5 * 5 * 5, 625 = 5 * 5 * 5 * 5, …
5,10(2 * 5),15(3 * 5) ,20(4 * 5) ,25(5 * 5 ) …
所以我们计算5的个数时需要n值大小,其最终计算公式如下:
n/5 + n /25 + n/125 + n/625 + …
譬如:11 = 11/5 = 2, 26 = 26 / 25 + 26 / 5 = 6;
【注意】:上述公式如果我们,采用不断分母不断乘5的方式进行,很容易造成溢出。因此我们采用 n / 5的方式来计算
题目代码
代码实现方面有两种方式,对应两种不同的时间复杂度
方法1: 循环遍历n的每一个数,如果是5的倍数,就计算有多少个5的因子
方法2:
//方法1
public int trailingZeroes(int n) {
int count = 0;
for(int i = 5; i <= n;i+= 5){
for(int j = i; j % 5 == 0 ; j /=5 ){
++count;
}
}
return count;
}
//方法2
public int trailingZeroes(int n) {
int count = 0;
while (n > 0) {
count += n / 5;
n = n / 5;
}
return count;
}
题目时间复杂度分析
方法1:循环遍历了每一个5的可能性,所以时间复杂度为
时间复杂度:O(n)
空间复杂度:O(1)。
方法2:
时间复杂度:O(logn)
空间复杂度:O(1)。
总结
虽然思路讲解一大堆,但是实际写的代码行数寥寥无几,这就是算法魅力。当你找到一个解题思路,其实描写的程序也是那么完美。相关知识点来源于力扣以及相关题解。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/factorial-trailing-zeroes