几行代码实现探索性数据分析

使用DataPrep轻松实现探索性数据分析。

安装DataPrep

pip install dataprep

几行代码生成探索性数据分析报告

import pandas as pd
from dataprep.eda import create_report
df = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')
report = create_report(df)
report # show report in notebook
report.save('My Fantastic Report') # save report to local disk
report.show_browser() # show report in the browser

更多教程可以参考官方文档

浏览器中会自动打开生成的报告文档,其中包含了基本的描述性统计图表、相关性情况和缺失值情况等。

 

### 关于Python进行探索性空间数据分析 对于希望利用Python执行探索性空间数据分析的人来说,存在多种库可以辅助完成这项工作。`pandas`提供了基于NumPy构建的数据结构,能够高效处理大量表格型数据[^2]。然而,在具体的空间数据分析场景下,更专业的工具如GeoPandas扩展了`pandas`的功能来支持地理空间操作。 #### 使用GeoPandas进行基础空间数据分析 GeoPandas是一个非常重要的包,它允许用户轻松读取、写入以及操作带有几何属性的数据集。下面是一段简单的代码片段展示如何加载并可视化一个Shapefile文件: ```python import geopandas as gpd from shapely.geometry import Point import matplotlib.pyplot as plt # 加载shapefile gdf = gpd.read_file('path_to_shapefile.shp') # 显示前几行查看数据 print(gdf.head()) # 绘制地图 fig, ax = plt.subplots(figsize=(10, 8)) gdf.plot(ax=ax) plt.show() ``` 此代码首先导入必要的模块,接着通过指定路径加载了一个Shapefile格式的空间数据集,并将其转换成GeoDataFrame对象以便后续处理;最后绘制出该区域的地图图形表示形式。 #### 结合其他库增强分析能力 为了进一步深入理解数据特征,还可以结合使用matplotlib和seaborn这样的绘图库来进行更加复杂美观的视觉化表达。此外,当涉及到缺失值检测时missingno能提供直观的帮助;而对于全面描述统计量的需求,则有pandas_profiling可供选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值