精选10个Python库,几行代码轻松搞定探索性数据分析!

 
 
点击上方“菜鸟学Python”,选择“星标”公众号

超级无敌干货,第一时间送达!!!

1614772f633061bd5a2213830071f904.jpeg

探索性数据分析是数据科学模型开发和数据集研究的重要组成部分之一。在拿到一个新数据集时首先就需要花费大量时间进行EDA来研究数据集中内在的信息。自动化的EDA Python包可以用几行Python代码执行EDA。在本文中整理了10个可以自动执行EDA并生成有关数据的见解的Python包,看看他们都有什么功能,能在多大程度上帮我们自动化解决EDA的需求。
  1. DTale

  2. Pandas-profiling

  3. sweetviz

  4. autoviz

  5. dataprep

  6. KLib

  7. dabl

  8. speedML

  9. datatile

  10. edaviz

1、D-Tale

6818a7e8ab6df802f42a456507411027.png

D-Tale使用Flask作为后端、React前端并且可以与ipython notebook和终端无缝集成。D-Tale可以支持Pandas的DataFrame, Series, MultiIndex, DatetimeIndex和RangeIndex。

import dtale
import pandas as pd
dtale.show(pd.read_csv("titanic.csv"))
e307380960841f586100fb7f67d4f1e0.gif

D-Tale库用一行代码就可以生成一个报告,其中包含数据集、相关性、图表和热图的总体总结,并突出显示缺失的值等。D-Tale还可以为报告中的每个图表进行分析,上面截图中我们可以看到图表是可以进行交互操作的。

2、Pandas-Profiling

ef5cb1dd9d7f607783dd39c262a1f7fe.png

Pandas-Profiling可以生成Pandas DataFrame的概要报告。panda-profiling扩展了pandas DataFrame df.profile_report(),并且在大型数据集上工作得非常好,它可以在几秒钟内创建报告。

#Install the below libaries before importing
import pandas as pd
from pandas_profiling import ProfileReport

#EDA using pandas-profiling
profile = ProfileReport(pd.read_csv('titanic.csv'), explorative=True)

#Saving results to a HTML file
profile.to_file("output.html")
718337e0af6d0dd95ba8ed8b26bbe9cd.gif

3、Sweetviz

8cbc20c48357dac8da09034182277e4b.png

Sweetviz是一个开源的Python库,只需要两行Python代码就可以生成漂亮的可视化图,将EDA(探索性数据分析)作为一个HTML应用程序启动。Sweetviz包是围绕快速可视化目标值和比较数据集构建的。

import pandas as pd
import sweetviz as sv

#EDA using Autoviz
sweet_report = sv.analyze(pd.read_csv("titanic.csv"))

#Saving results to HTML file
sweet_report.show_html('sweet_report.html')

Sweetviz库生成的报告包含数据集、相关性、分类和数字特征关联等的总体总结。

84890c550646b305f8241e354ebd3d1c.gif

4、AutoViz

09d4e52542ba837046e16e520545cb45.png

Autoviz包可以用一行代码自动可视化任何大小的数据集,并自动生成HTML、bokeh等报告。用户可以与AutoViz包生成的HTML报告进行交互。

import pandas as pd
from autoviz.AutoViz_Class import AutoViz_Class

#EDA using Autoviz
autoviz = AutoViz_Class().AutoViz('train.csv')
3b99d2cabd3e5795ff214bd55f2e8422.gif

5、Dataprep

5983fd69cb0f8dbc07731a50ab9bdae1.png

Dataprep是一个用于分析、准备和处理数据的开源Python包。DataPrep构建在Pandas和Dask DataFrame之上,可以很容易地与其他Python库集成。

DataPrep的运行速度这10个包中最快的,他在几秒钟内就可以为Pandas/Dask DataFrame生成报告。

from dataprep.datasets import load_dataset
from dataprep.eda import create_report

df = load_dataset("titanic.csv")
create_report(df).show_browser()
4e758e212cf28f9932002898ec2bc14b.png

6、Klib

493eed5a8874e676d968a7d2b22e059f.png

klib是一个用于导入、清理、分析和预处理数据的Python库。

import klib
import pandas as pd

df = pd.read_csv('DATASET.csv')
klib.missingval_plot(df)
5fb10927ab687c120edf26b8a8bd375e.png
klib.corr_plot(df_cleaned, annot=False)

2e7f038923d4f16652ad60f898d76d84.png

klib.dist_plot(df_cleaned['Win_Prob'])
1fe38daa0b2938b55810748eaadc39ef.png
klib.cat_plot(df, figsize=(50,15))
bab101a8119b6e837b52308625b92623.png

klibe虽然提供了很多的分析函数,但是对于每一个分析需要我们手动的编写代码,所以只能说是半自动化的操作,但是如果我们需要更定制化的分析,他是非常方便的。

65d93900a81889660a2c2520de832b44.gif

7、Dabl

Dabl不太关注单个列的统计度量,而是更多地关注通过可视化提供快速概述,以及方便的机器学习预处理和模型搜索。

79f5d84fcbab8526089f88074835b4e1.png

dabl中的Plot()函数可以通过绘制各种图来实现可视化,包括:

  • 目标分布图

  • 散点图

  • 线性判别分析

import pandas as pd
import dabl

df = pd.read_csv("titanic.csv")
dabl.plot(df, target_col="Survived")
f506d544457eff1f05ddcc0a302067a2.gif

8、Speedml

SpeedML是用于快速启动机器学习管道的Python包。SpeedML整合了一些常用的ML包,包括 Pandas,Numpy,Sklearn,Xgboost 和 Matplotlib,所以说其实SpeedML不仅仅包含自动化EDA的功能。

SpeedML官方说,使用它可以基于迭代进行开发,将编码时间缩短了70%。

from speedml import Speedml

sml = Speedml('../input/train.csv', '../input/test.csv',
            target = 'Survived', uid = 'PassengerId')
sml.train.head()
eccc42fbd7f83e9eb24489616b7dbedf.png
sml.plot.correlate()

d9eebaf1fc3d876b0147c56bd0708394.png

sml.plot.distribute()

6a72b793cb37552935cf1672a14f6faf.png

sml.plot.ordinal('Parch')

2e21e07ff4240b35c832e4acad4378be.png

sml.plot.ordinal('SibSp')

c76229c4bec7b225f4001cdf9cfa7133.png

sml.plot.continuous('Age')
2fae8178c295d66808bb0f043f7dfdba.png

9、DataTile

DataTile(以前称为Pandas-Summary)是一个开源的Python软件包,负责管理,汇总和可视化数据。DataTile基本上是PANDAS DataFrame describe()函数的扩展。

import pandas as pd
from datatile.summary.df import DataFrameSummary

df = pd.read_csv('titanic.csv')
dfs = DataFrameSummary(df)
dfs.summary()
c81fadea39b8a9675843e912ac0d27f8.png

10、edaviz

edaviz是一个可以在Jupyter Notebook和Jupyter Lab中进行数据探索和可视化的python库,他本来是非常好用的,但是后来被砖厂(Databricks)收购并且整合到bamboolib 中,所以这里就简单的给个演示。

248ffda2218aca117c973b8b6c9408b7.gif

总结

在本文中,我们介绍了10个自动探索性数据分析Python软件包,这些软件包可以在几行Python代码中生成数据摘要并进行可视化。通过自动化的工作可以节省我们的很多时间。

Dataprep是我最常用的EDA包,AutoViz和D-table也是不错的选择,如果你需要定制化分析可以使用Klib,SpeedML整合的东西比较多,单独使用它啊进行EDA分析不是特别的适用,其他的包可以根据个人喜好选择,其实都还是很好用的,最后edaviz就不要考虑了,因为已经不开源了。

来源丨数据STUDIO

 
 
推荐阅读:
入门: 最全的零基础学Python的问题  | 零基础学了8个月的Python  | 实战项目 |学Python就是这条捷径
干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 |   从万众期待到口碑扑街!唐探3令人失望  | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影
趣味:弹球游戏  | 九宫格  | 漂亮的花 | 两百行Python《天天酷跑》游戏!
AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影
小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!|  再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|

年度爆款文案

点阅读原文,看B站我的视频!

### 使用CMD命令查找文件的方法 在Windows操作系统中,`cmd`提供了多种方式用于搜索文件。以下是几种常见的方法及其具体实现: #### 方法一:通过 `dir` 和 `/s` 参数 `dir` 是 Windows 中最基本的目录列表显示工具之一。配合 `/s` 参数可以递归地搜索当前目录及其子目录中的目标文件[^3]。 - **命令格式**: ```bash dir 文件名 /s ``` - **说明**:此命令会在当前目录及其所有子目录中寻找匹配的文件,并返回其完整路径。 例如,要查找名为 `example.txt` 的文件,可执行如下命令: ```bash dir example.txt /s ``` --- #### 方法二:结合 `find` 进行过滤 如果希望进一步筛选结果,可以将 `dir /s` 输出的结果传递给 `find` 或者 `findstr` 工具进行关键字过滤[^5]。 - **命令格式**: ```bash dir /s /b | find "关键词" ``` - **示例**:假设需要找到包含单词 `report` 的文件路径,则运行以下命令: ```bash dir /s /b | find "report" ``` 这种方式特别适合于模糊查询场景,能够有效减少无关结果的数量。 --- #### 方法三:利用通配符直接定位特定模式的文件 对于已知部分文件名的情况(比如知道扩展名或者前缀),可以直接采用带通配符的方式调用 `dir` 命令。 - **命令实例**: 如果想查寻以 `.log` 结尾的日志类文档,在桌面所在的磁盘驱动器里输入下面语句即可完成任务。 ```bash dir *.log /s ``` 此外还可以限定范围至某个特殊命名规则之内,像寻找名字中含有日期字段的数据集对象等复杂需求也同样适用该逻辑处理机制。 --- #### 方法四:高级字符串匹配——借助 `findstr` 当面对更加复杂的条件设定时,如需精确到某几行内部含有指定短语的内容提取工作,则推荐运用强大的文本分析利器 —— `findstr` 来达成目的[^2]。 - **基本语法结构** ```bash findstr /s /n "待搜索单词" 路径\*.类型 ``` 举个例子来说就是如果我们想要从桌面上所有的 txt 文档当中快速锁定那些提及了 aaa 字样的地方的话就可以这么写: ```bash findstr /s /n "aaa" C:\Users\Username\Desktop\*.txt ``` 这里的每一个组成部分都有各自的作用:“/S”表示在整个树形结构里面展开探索;而"/N"则负责标注每一项发现的具体编号以便后续追踪管理变得更为便捷高效起来。 --- ### 总结 综上所述,无论是简单的全盘扫描还是针对性强的局部探测亦或是深入挖掘隐藏细节层面的操作都可以依靠上述介绍过的这些基础却实用性强悍无比的功能模块轻松搞定! ```python def search_file(file_name, drive='C:\\'): import os result = [] for root, dirs, files in os.walk(drive): if file_name in files: result.append(os.path.join(root, file_name)) return result ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值