flask需求文件requirements.txt的创建和使用

flask需求文件requirements.txt的创建及使用

简介

flask项目中包含一个requirements.txt 文件,用于记录所有依赖包及其精确的版本号用以新环境部署。

创建

生成需求文件。在命令行输入“pip freeze >requirements.txt”回车运行后,将会在项目文件下生成requirements.txt文件,里面包含FlaskBlog项目此时使用到的所有第三方库的信息

pip freeze > requirements.txt

使用

当在另一个虚拟环境需要使用此项目的这些第三库时,可以直接运行“pip install -r requirements.txt”命令

pip install -r requirements.txt
### 使用 Conda 安装 Flash Attention 包 对于希望利用 `conda` 来管理环境并安装软件包的用户来说,直接通过 `conda` 安装特定于 GitHub 项目的库如 `flash_attention` 可能会遇到挑战。官方 Anaconda 渠道可能并未提供该库的预编译版本。 然而,可以创建一个新的 conda 环境来确保兼容性隔离性,并在此环境中使用 pip 安装来自 GitHub 的 flash-attention 库[^1]: ```bash # 创建新的 conda 环境 (假设 Python 版本为 3.8 或更高) conda create -n flash_env python=3.9 conda activate flash_env # 如果有特殊需求比如 PyTorch, CUDA 等,则可以在激活新环境后安装这些依赖 conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch # 接下来按照项目文档说明克隆仓库并安装 git clone https://github.com/Dao-attention.git cd flash-attention && pip install . ``` 值得注意的是,在某些情况下,为了成功完成安装过程,可能还需要调整 `requirements.txt` 文件中的条目,例如移除可能导致冲突或不必要的依赖项,像 bio==0.1.0 这样的条目应该被注释掉再继续执行 `pip install -r requirements.txt` 命令以安装其余所需依赖项[^2]。 尽管上述方法主要基于 pip 源码安装的方式,但在当前条件下这是最接近于通过 conda 实现目标的方法之一。如果未来社区提供了针对此库的 conda 构建支持,则可以直接从 conda channel 中获取更简便的安装体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值