图像处理
文章平均质量分 76
风华明远
目前研究Tensorflow 以及 tkinter
展开
-
python cv2.HoughCircles 霍夫圆检测
cv2的HoughCircles函数的用法。不同的param1和param2参数对检测结果影响很大原创 2022-06-10 11:55:59 · 14972 阅读 · 0 评论 -
Python cv2 accumulate 函数族
介绍cv2的accumulate函数族原创 2022-06-09 14:41:44 · 875 阅读 · 0 评论 -
matplotlib的imshow函数显示灰度图像要设置vmin和vmax2个参数
matplotlib的imshow函数在显示灰度图像的时候要设置vmin和vmax2个函数原创 2022-06-08 09:51:42 · 4761 阅读 · 0 评论 -
十三种基于直方图的图像全局二值化算法原理、实现、代码及效果
十三种基于直方图的图像全局二值化算法实现原创 2022-06-07 11:53:05 · 1702 阅读 · 0 评论 -
阈值分割的三角方法以及Python实现
三角法计算阈值分割图像的分析以及Python实现,并与cv2的threshold函数cv2.THRESH_TRIANGLE参数进行了比较。二者的结果完全一致。原创 2022-05-18 16:51:18 · 1810 阅读 · 0 评论 -
基于阈值的7种图像分割方法以及Python实现
阈值图像分割的7种方法之固定阈值和双峰法原创 2022-05-17 13:27:25 · 17872 阅读 · 1 评论 -
CV2 Sobel算子实现方法研究
CV2 Sobel算子Sobel算子Sobel算子生成1. Sobel算子的数学基础(大部分内容来源于第一个链接)距离的3种数学描述Sobel算子Sobel算子是在Prewitt算子基础上增加了权重。典型的Prewitt算子为:2个算子分别对应x方向和y方向的差分。Sobel算子在Prewitt算子的基础上增加了权重。其典型的算子为:关于Sobel算子的生成有2种不同的解释。见本文第二部分Sobel算子生成Sobel算子的生成有2种解释:一种方法是数学方法。链接中有详细的描述。另外一种是基原创 2022-05-13 11:40:57 · 1115 阅读 · 0 评论 -
Python grabcut 提取图像前景
grabcut是一个非常实用的提取图像前景的算法。该方法是一种基于图切割的图像分割方法,是基于graph cut算法的改进。grabcut是需要少量用户交互操作。简单的说,就是需要用户指定要识别的区域。opencv中提供了grabcut函数,直接调用就可以实现图像前景的提取。该函数的说明如下: mask, bgdModel, fgdModel = cv2.grabCut(img, mask, rect, bgdModel, fgdModel, iterCount, mode=None)参数说明:原创 2020-12-25 10:30:20 · 3208 阅读 · 1 评论 -
Python 使用cv2.canny 进行图像边缘检测
CV2提供了提取图像边缘的函数canny。其算法思想如下: 1. 使用高斯模糊,去除噪音点(cv2.GaussianBlur) 2. 灰度转换(cv2.cvtColor) 3. 使用sobel算子,计算出每个点的梯度大小和梯度方向 4. 使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应 5. 应用双阈值,来确定真实和潜在的边缘 6. 通过抑制弱边缘来完成最终的边缘检测Canny函数的定义如下:edge = cv2.Canny(image,原创 2020-12-16 10:01:41 · 36649 阅读 · 4 评论 -
CV2自适应阈值函数:adaptiveThreshold()
adaptiveThreshold是threshold的进阶版本。threshold只是简单的把图像的像素根据阈值区分,这样的区分比较粗糙。可能会导致图像的信息与特征完全无法提取,或者漏掉一些关键的信息。比如这个图片:使用cv2.threshold来处理,是无法有效去除背景的。而使用adaptivThreshold就有效的多:虽然人物的信息丢失了很多,但是背景基本上被去掉了。丢失的人物的信息可以通过位运算等恢复。在去除背景提取前景方面,自适应阈值函数要有效很多。自适应阈值算法的核心是将图像分割原创 2020-12-08 08:17:45 · 38059 阅读 · 2 评论 -
CV2简单阈值函数:cv2.threshold()
cv2中的阈值相关函数有:普通阈值函数threshold自适应阈值函数adaptivthreshold首先介绍简单阈值函数:cv2.threshold(src, thresh, maxval, type[, dst]),返回值为retval, dst其中:src是灰度图像thresh是起始阈值maxval是最大值type是定义如何处理数据与阈值的关系。有以下几种:选项像素值>thresh其他情况cv2.THRESH_BINARYmaxval0cv2原创 2020-12-07 09:50:07 · 67225 阅读 · 11 评论 -
Python 提取前景-单一颜色背景
图像处理中去除背景是一个很古老的话题。比如在图像识别中,就需要去除背景,保留感兴趣的部分。去除背景的算法有:1)掩膜进行位运算2)使用grabcut3)边缘提取4)轮廓检测+填充法5)使用HSV颜色空间颜色区域提取的方法,提取出前景或者背景。在此文中有比较好的描述,大家可以参考提取前景方法 一文首先实现第一种情况,也是最简单的情况:单一颜色背景。所谓单一颜色背景的颜色并不是一种,因为相近的颜色很多。好在这些可以通过算法加以区别。单一颜色背景可以通过简单的去除相近颜色的方法实现,前面的文章已经原创 2020-12-06 10:34:36 · 2292 阅读 · 0 评论