【Elasticsearch系列之零】Elasticsearch基础介绍及索引原理分析
ps: 我一般喜欢先拿来用,看看效果之后再研究。我用logstash将Oracle数据库中数据同步到了ES中,实现方法及效果可以参看 https://blog.csdn.net/weixin_42273782/article/details/86573780 。我看了看效果很强大,现在做检索的一个solor、一个ES,so在此稍微深入一下ES的各个概念。建议进入ES之前,把下面参考的两个博文看一下。
首先,本文全部是参考自 https://www.cnblogs.com/dreamroute/p/8484457.html 及 https://blog.csdn.net/makang110/article/details/80596017 及 时间序列数据库的秘密 (2)——索引 。感谢先贤们所做的工作,感谢开源。
ES介绍
Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎,一个建立在全文搜索引擎 Apache Lucene™ 基础上的搜索引擎。不仅包括了全文搜索功能,还可以进行以下工作:
- 分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。
- 实时分析的分布式搜索引擎。
- 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。
1. 集群基本概念
- Cluster:集群
ES可以作为一个独立的单个搜索服务器。不过,为了处理大型数据集,实现容错和高可用性,ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。 - Node:节点
形成集群的每个服务器称为节点。 - Shard:分片
当有大量的文档时,由于内存的限制、磁盘处理能力不足、无法足够快的响应客户端的请求等,一个节点可能不够。这种情况下,数据可以分为较小的分片。每个分片放到不同的服务器上。
当你查询的索引分布在多个分片上时,ES会把查询发送给每个相关的分片,并将结果组合在一起,而应用程序并不知道分片的存在。即:这个过程对用户来说是透明的。 - Replia:副本
为提高查询吞吐量或实现高可用性,可以使用分片副本。
副本是一个分片的精确复制,每个分片可以有零个或多个副本。ES中可以有许多相同的分片,其中之一被选择更改索引操作,这种特殊的分片称为主分片。 当主分片丢失时,如:该分片所在的数据不可用时,集群将副本提升为新的主分片。 - 全文检索
全文检索就是对一篇文章进行索引,可以根据关键字搜索,类似于mysql里的like语句。
全文索引就是把内容根据词的意义进行分词,然后分别创建索引,例如”你们的激情是因为什么事情来的” 可能会被分词成:“你们“,”激情“,“什么事情“,”来“ 等token,这样当你搜索“你们” 或者 “激情” 都会把这句搜出来。
2. ES基本概念
概念性的东西,对照着实物看效果更好,我当然是参看同步到ES中数据来理解的。先说Elasticsearch的文件存储,Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档,用JSON作为文档序列化的格式。参看实例还是很容易理解,下面是ES中数据概念与MySQL对比图:
- 关系型数据库中的数据库(DataBase),等价于ES中的索引(Index)
- 一个数据库下面有N张表(Table),等价于1个索引Index下面有N多类型(Type)。
- 一个数据库表(Table)下的数据由多行(ROW)多列(column,属性)组成,等价于1个Type由多个文档(Document)和多Field组成。
- 在一个关系型数据库里面,schema定义了表、每个表的字段,还有表和字段之间的关系。 与之对应的,在ES中:Mapping定义索引下的Type的字段处理规则,即索引如何建立、索引类型、是否保存原始索引JSON文档、是否压缩原始JSON文档、是否需要分词处理、如何进行分词处理等。
- 在数据库中的增insert、删delete、改update、查search操作等价于ES中的增PUT/POST、删Delete、改_update、查GET。
3. 索引
Elasticsearch最关键的就是提供强大的索引能力了,这个博客 https://www.cnblogs.com/dreamroute/p/8484457.html 写的很不错。