题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个非递减排序的数组的一个旋转,输出旋转数组的最小元素。例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。
NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
自己的思路
拿到题目,第一眼看上去就感觉怪怪的,这不就是一个求数组的最小值吗,直接遍历,O(n)走起,那这跟数组的旋转不旋转有毛关系呢,这也能上《剑指offer》?虽然抱着怀疑的态度,还是按照自己的第一直觉把代码码完了,提交,居然a了,我严重怀疑这个测试系统有问题,但是的确是a了,我能说啥,可能自己也喜欢偷懒,a了就想思考下去了,这样可不行啊,面试官可不会觉得麻烦就不让你说了。还是先把自己偷懒的代码贴出来吧,毫无技术含量可言。
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
if(rotateArray.empty()){ //这里开始还犯了点错误,vector判断为空用empty函数,数组判断为空直接==NULL
return 0;
}
int min = rotateArray[0];
for(int i=1;i<rotateArray.size();++i){
if(rotateArray[i]<min){
min = rotateArray[i];
}
}
return min;
}
};
大佬的思路
由于没有仔细思考,这是一个非递减数组,没有必要从头到尾遍历,大佬注意到旋转之后的数组实际上可以划分为两个排序的子数组,采用二分查找(当然这不是普通的有序数的二分查找,而是采用了它折半的思想),时间复杂度只有O(logn),这个写出来,应该是能得到面试官的青睐的。
需要考虑三种情况:
a. rotateArray[mid] > rotateArray[high]
出现这种情况的rotateArray类似{3,4,5,6,0,1,2},此时最小数字一定在mid的右边。
low = mid + 1;
b. rotateArray[mid] == rotateArray[high]
出现这种情况的array类似 {1,0,1,1,1}或者{1,1,1,0,1},此时最小数字不好判断在mid左边还是右边,只好一个一个试。(往high的左边找准没错)
high = high - 1;
c. rotateArray[mid] < rotateArray[high]
出现这种情况的array类似{2,2,3,4,5,6,6},此时最小数字一定就是rotateArray[mid]或者在mid的左边(要么是没有旋转,要么只剩两个比较元素了),因为右边必然都是递增的。
high = mid;
注意这里有个坑:如果待查询的范围最后只剩两个数,那么mid一定会指向下标靠前的数字。
比如array = {4,6}
rotateArray[low] = 4 ;rotateArray[mid] = 4 ; rotateArray[high] = 6 ;
如果high = mid - 1,就会产生错误, 因此high = mid,但情形a中low = mid + 1就不会错误
上代码
class Solution {
public:
int minNumberInRotateArray(vector<int> rotateArray) {
int low = 0 ;
int high = rotateArray.size() - 1;
while(low < high){ //当low==mid时,跳出循环,即找到了最小值(二分查找的条件基本就是low<high)
int mid = low + (high - low) / 2;
if(rotateArray[mid] > rotateArray[high]){
low = mid + 1;
}else if(rotateArray[mid] == rotateArray[high]){
high = high - 1;
}else{
high = mid; //这里很妙,如果写成high=mid-1就会报错,因为如果待查询的范围最后只剩两个数,
//那么mid一定会指向下标靠前的数字,减1就到low之前去了,明显错误
}
}
return rotateArray[low];
}
};