题目:
给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数。
逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < j且 a[i] > a[j],则其为一个逆序对;否则不是。
由于答案可能很大,只需要返回 答案 mod 109 + 7 的值。
来源:力扣(LeetCode)
示例 1:
输入: n = 3, k = 0
输出: 1
解释:
只有数组 [1,2,3] 包含了从1到3的整数并且正好拥有 0 个逆序对。
示例 2:
输入: n = 3, k = 1
输出: 2
解释:
数组 [1,3,2] 和 [2,1,3] 都有 1 个逆序对。
class Solution:
def kInversePairs(self, n: int, k: int) -> int:
mod = 10**9 + 7
f = [1] + [0] * k
for i in range(1, n + 1):
g = [0] * (k + 1)
for j in range(k + 1):
g[j] = (g[j - 1] if j - 1 >= 0 else 0) - (f[j - i] if j - i >= 0 else 0) + f[j]
g[j] %= mod
f = g
return f[k]