Datawhale AI夏令营 使用机器学习方法入门时间序列预测

1.什么是时间序列?

时间序列(Time Series)是一种数据集,其中的数据点是按照时间顺序排列的,每个数据点都对应一个具体的时间点。时间序列数据通常来源于对某一过程或现象在不同时间点上重复测量的结果。

常见的时间序列场景有:

  1. 金融领域:股票价格预测、利率变动、汇率预测等。

  2. 气象领域:温度、降水量、风速等气候指标的预测。

  3. 销售预测:产品或服务的未来销售额预测。

  4. 库存管理:预测库存需求,优化库存水平。

  5. 能源领域:电力需求预测、石油价格预测等。

  6. 医疗领域:疾病爆发趋势预测、医疗资源需求预测


    时间序列问题的数据往往有如下特点:

  • 时间依赖性:数据点之间存在时间上的连续性和依赖性。

  • 非平稳性:数据的统计特性(如均值、方差)随时间变化。

  • 季节性:数据表现出周期性的模式,如年度、月度或周度。

  • 趋势:数据随时间推移呈现长期上升或下降的趋势。

  • 周期性:数据可能存在非固定周期的波动。

  • 机波动:数据可能受到随机事件的影响,表现出不确定性。


    2.如何用机器学习方法实现时序预测 ?

使用机器学习方法一般主要需要从 获取数据&增强特征提取模型 三个方面下手。

本节将会练习以下技能

  • 使用数据集绘制柱状图和折线图

  • 使用时间序列数据构建历史平移特征和窗口统计特征

  • 使用lightgbm模型进行训练并预测

基础概念入门

GBDT

GBDT (Gradient Boosting Decision Tree) 是机器学习中一个长盛不衰的模型,其主要思想是利用弱分类器(决策树)迭代训练以得到最优模型,该模型具有训练效果好、不易过拟合等优点。

GBDT不仅在工业界应用广泛,通常被用于多分类、点击率预测、搜索排序等任务;在各种数据挖掘竞赛中也是致命武器,据统计Kaggle上的比赛有一半以上的冠军方案都是基于GBDT

LightGBM

LightGBM(Light Gradient Boosting Machine)是一个实现GBDT算法的框架,支持高效率的并行训练,并且具有更快的训练速度、更低的内存消耗、更好的准确率、支持分布式可以快速处理海量数据等优点。

LightGBM 框架中还包括随机森林和逻辑回归等模型。通常应用于二分类、多分类和排序等场景。

例如:在个性化商品推荐场景中,通常需要做点击预估模型。使用用户过往的行为(点击、曝光未点击、购买等)作为训练数据,来预测用户点击或购买的概率。根据用户行为和用户属性提取一些特征,包括:

  • 类别特征(Categorical Feature):字符串类型,如性别(男/女)。

  • 物品类型:服饰、玩具和电子等。

  • 数值特征(Numrical Feature):整型或浮点型,如用户活跃度或商品价格等。

进阶代码详解

完整代码如下:

(1)导入模块

此部分包含代码所需的模块

import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')

(2)探索性数据分析(EDA)

在数据准备阶段,主要读取训练数据和测试数据,并进行基本的数据展示。

train = pd.read_csv('./data/train.csv')
test = pd.read_csv('./data/test.csv')

数据简单介绍:

  • 其中id为房屋id,

  • dt为日标识,训练数据dt最小为11,不同id对应序列长度不同;

  • type为房屋类型,通常而言不同类型的房屋整体消耗存在比较大的差异;

  • target为实际电力消耗,也是我们的本次比赛的预测目标。

使用数据集绘制柱状图和折线图可视化分析,帮助我们对数据有个简单的了解。

import matplotlib.pyplot as plt
# 不同type类型对应target的柱状图
type_target_df = train.groupby('type')['target'].mean().reset_index()
plt.figure(figsize=(8, 4))
plt.bar(type_target_df['type'], type_target_df['target'], color=['blue', 'red'])
plt.xlabel('Type')
plt.ylabel('Average Target Value')
plt.title('Bar Chart of Target by Type')
plt.show()

  • id为00037f39cf的按dt为序列关于target的折线图

(3)特征工程

这里主要构建了 历史平移特征 窗口统计特征;每种特征都是有理可据的,具体说明如下:

  • 历史平移特征:通过历史平移获取上个阶段的信息;如下图所示,可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建。

  • 窗口统计特征:窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。如下图所示,可以将d时刻之前的三个时间单位的信息进行统计构建特征给我d时刻。

完整代码如下:

# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

(4)模型训练与测试集预测

这里选择使用Lightgbm模型,也是通常作为数据挖掘比赛的基线模型,在不需要过程调参的情况的也能得到比较稳定的分数。

另外需要注意的训练集和验证集的构建:因为数据存在时序关系,所以需要严格按照时序进行切分,

  • 这里选择原始给出训练数据集中dt为30之后的数据作为训练数据,之前的数据作为验证数据

  • 这样保证了数据不存在穿越问题(不使用未来数据预测历史数据)

  • def time_model(lgb, train_df, test_df, cols):
        # 训练集和验证集切分
        trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
        val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
        # 构建模型输入数据
        train_matrix = lgb.Dataset(trn_x, label=trn_y)
        valid_matrix = lgb.Dataset(val_x, label=val_y)
        # lightgbm参数
        lgb_params = {
            'boosting_type': 'gbdt',
            'objective': 'regression',
            'metric': 'mse',
            'min_child_weight': 5,
            'num_leaves': 2 ** 5,
            'lambda_l2': 10,
            'feature_fraction': 0.8,
            'bagging_fraction': 0.8,
            'bagging_freq': 4,
            'learning_rate': 0.05,
            'seed': 2024,
            'nthread' : 16,
            'verbose' : -1,
        }
        # 训练模型
        model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], 
                          categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)
        # 验证集和测试集结果预测
        val_pred = model.predict(val_x, num_iteration=model.best_iteration)
        test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
        # 离线分数评估
        score = mean_squared_error(val_pred, val_y)
        print(score)
           
        return val_pred, test_pred
        
    lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)
    
    # 保存结果文件到本地
    test['target'] = lgb_test
    test[['id','dt','target']].to_csv('submit.csv', index=None)

    注意此处的参数设置根据lightgbm3.3.0设置,如报错lgb.train()函数里没有verbose_eval,请调整版本

  • 16
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值