目录
第一章 图像处理基础概念
第二章 常见算法处理
第三章 灰度变化
第四章 空间滤波
第五章 频域滤波
第六章 色彩基础
第七章 小波和多分辨率
第八章 图像表示和描述
第九章 形态学图像处理
第十章 图像分割与目标识别
一、加(求平均降噪)
针对降噪的带噪图像相加(平均)
原理:
相加是连续积分的离散形式。通过图片相加的相同处理方法是使用CCD或类似传感器的累积能力,通过长时间地观察同一场景来达到降噪的目的。冷却也常用于降低传感器噪声,最终结果类似于对一组噪声数字图像进行平均操作
计算方法:
g(x,y)=f(x,y)+n(x,y),
无噪声图像f(x,y);加性噪声n(x,y),被加性噪声污染后的f图像g(x,y),g(x,y)=f(x,y)+n(x,y),
假设噪声不相关,且均值为零。通过一组带噪图像g1(x,y)的相加来减少噪声。
如果图像g(mean)(x,y)是通过K幅不同的噪声图像进行平均形成的,
则g(mean)(x,y)=1/K *[g1(x,y)+g2(x,y)+...g(k)(x,y)]
E{g(mean)(x.y)}=f(x,y)
σ^2(g(mean)(x,y)=1/K*σ^2(n(x,y))
E{g(mean)(x.y)}是g(mean)的期望值,σ^2(g(mean)(x,y)是g(mean)所在坐标(x,y)处的方差,σ^2(n(x,y))是n在坐标(x,y)处的方差
在平均图像中任意一点处的标准差是
σ(g(mean)(x,y))=1/sqrt(K)*σ(n(x,y))
注意事项:
随着K的增大(图片数量的增加),每个位置的像素值的变化将减小,即在求平均的过程中所使用的带噪图像数量增加,则g(x,y)越接近无噪图像f(x,y),为了避免输出图像带来模糊和其他人为缺陷,加噪图像g(x,y)必须已对齐(配准)
均值m