第二章 常见算法处理(三)加减乘除,空间域和频域,内插

目录

第一章 图像处理基础概念

第二章 常见算法处理

第三章 灰度变化

第四章 空间滤波

第五章 频域滤波

第六章 色彩基础

第七章 小波和多分辨率

第八章 图像表示和描述

第九章 形态学图像处理

第十章 图像分割与目标识别


一、加(求平均降噪)

针对降噪的带噪图像相加(平均)

原理:

相加是连续积分的离散形式。通过图片相加的相同处理方法是使用CCD或类似传感器的累积能力,通过长时间地观察同一场景来达到降噪的目的。冷却也常用于降低传感器噪声,最终结果类似于对一组噪声数字图像进行平均操作

计算方法:

g(x,y)=f(x,y)+n(x,y),

无噪声图像f(x,y);加性噪声n(x,y),被加性噪声污染后的f图像g(x,y),g(x,y)=f(x,y)+n(x,y),

假设噪声不相关,且均值为零。通过一组带噪图像g1(x,y)的相加来减少噪声。

如果图像g(mean)(x,y)是通过K幅不同的噪声图像进行平均形成的,

则g(mean)(x,y)=1/K *[g1(x,y)+g2(x,y)+...g(k)(x,y)]

E{g(mean)(x.y)}=f(x,y)

σ^2(g(mean)(x,y)=1/K*σ^2(n(x,y))

E{g(mean)(x.y)}是g(mean)的期望值,σ^2(g(mean)(x,y)是g(mean)所在坐标(x,y)处的方差,σ^2(n(x,y))是n在坐标(x,y)处的方差

在平均图像中任意一点处的标准差是

σ(g(mean)(x,y))=1/sqrt(K)*σ(n(x,y))

注意事项:

随着K的增大(图片数量的增加),每个位置的像素值的变化将减小,即在求平均的过程中所使用的带噪图像数量增加,则g(x,y)越接近无噪图像f(x,y),为了避免输出图像带来模糊和其他人为缺陷,加噪图像g(x,y)必须已对齐(配准)

均值m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值