几何的相关知识

1、平面直线(已知两点 p1(x1,y1),p2(x2,y2))

a、斜截式 :

y=kx+b; 

k=(y2-y1)/(x2-x1) ,(k=tanθ);

b=((y2*x1)-(y1*x2))/(x1-x2);

b、一般式 :ax+by+c=0 (a,b 不同时为零)

a=y2-y1;

b=x2-x1;

c=y1x2-y2x1;

c、截距式(过点(a,0),(0,b)):bx+ay-ab=0;

也可表达为x/a+y/b=1 (a,b不为零,不适用于垂直于坐标轴的直线)

d、两点式 (y-y1)/(y-y2)=(x-x1)/(x-x2)

e、点斜式(已知一点和斜率):(y-y1)=k(x-x1)

f、法线式:x*cosθ+y*sinθ-p=0 ;(p是到原点的距离,θ是法线与x轴正方向的夹角)

g、点法式:a(x-x1)+b(y-y1)=0;

已知两点坐标P1(x1,y1),P2(x2,y2)确定一条直线,则这个直线上的任意一点的大小

y=(x-x1)*(y2-y1)/(x2-x1)+y1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
蝴蝶定理是射影几何中的一个重要定理,它描述了一个四边形对角线上的三个交点满足一条关系,即它们共线。下面我将用射影几何知识证明蝴蝶定理。 首先,我们需要明确射影几何中的一些概念。在射影平面中,每条直线都有一个无穷远点,所有直线的无穷远点构成一条无穷远直线。此外,每个点和无穷远点构成一个点对,点对之间可以定义交点。 接下来,我们来证明蝴蝶定理。 假设在射影平面中,有一个四边形$ABCD$,它的对角线$AC$和$BD$相交于点$E$。同时,我们连接$AD$和$BC$,它们的交点为$F$。 根据射影几何的定义,我们可以发现四边形$ABCD$的对边是平行的。因此,我们可以利用平行线的性质,证明蝴蝶定理成立。 首先,我们考虑点$A$和点$C$在对角线$BD$上的投影点,分别为$A'$和$C'$。由于$ABCD$是一个四边形,所以$A'C'$是平行于$BD$的。同时,点$A$和点$C$构成一个点对,它们在无穷远直线上的投影点分别为$A_{\infty}$和$C_{\infty}$。根据点对之间的交点定义,$A_{\infty}$和$C_{\infty}$的连线与$BD$相交于点$G$。 同理,我们可以得到点$B$和点$D$在对角线$AC$上的投影点,分别为$B'$和$D'$,它们在无穷远直线上的投影点分别为$B_{\infty}$和$D_{\infty}$。$B_{\infty}$和$D_{\infty}$的连线与$AC$相交于点$H$。 接下来,我们考虑点$A$和点$D$在对角线$AC$上的投影点,分别为$A''$和$D''$。由于$ABCD$是一个四边形,所以$A''D''$是平行于$AC$的。同时,点$A$和点$D$构成一个点对,它们在无穷远直线上的投影点分别为$A_{\infty}$和$D_{\infty}$。根据点对之间的交点定义,$A_{\infty}$和$D_{\infty}$的连线与$AC$相交于点$K$。 同理,我们可以得到点$B$和点$C$在对角线$BD$上的投影点,分别为$B''$和$C''$,它们在无穷远直线上的投影点分别为$B_{\infty}$和$C_{\infty}$。$B_{\infty}$和$C_{\infty}$的连线与$BD$相交于点$L$。 现在,我们需要证明点$F$、$G$和$L$共线。根据平行线的性质,我们知道$A'C'$、$A''D''$和$FG$是平行的。因此,我们可以得到: $$\frac{FG}{A''D''}=\frac{AF}{A''A}$$ 同理,我们可以得到: $$\frac{FG}{B''C''}=\frac{BF}{B''B}$$ 将上面两个式子相加,可以得到: $$\frac{FG}{A''D''}+\frac{FG}{B''C''}=\frac{AF}{A''A}+\frac{BF}{B''B}$$ 将$A''D''$和$B''C''$代入,可以得到: $$FG=\frac{AF}{A''A}\cdot\frac{B''C''}{BF}+1\cdot\frac{B''C''}{BF}$$ 继续化简,可以得到: $$FG=\frac{AF}{A''A}\cdot\frac{B''C''}{BF}+\frac{BF}{B''B}\cdot\frac{A''D''}{AF}$$ 由于$A''A$和$B''B$是无穷远直线上的投影距离,因此它们可以表示为: $$A''A=\frac{AA_{\infty}}{AC_{\infty}}\quad B''B=\frac{BB_{\infty}}{BD_{\infty}}$$ 同理,$BF$和$AF$也可以表示为: $$BF=\frac{BB_{\infty}}{BD_{\infty}}\quad AF=\frac{AA_{\infty}}{AC_{\infty}}$$ 将上面四个式子代入,可以得到: $$FG=\frac{AA_{\infty}\cdot BB_{\infty}}{AC_{\infty}\cdot BD_{\infty}}$$ 这意味着点$F$、$G$和$L$在一条直线上,证毕。 因此,我们证明了蝴蝶定理在射影几何中成立。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值