PyTorch学习(八)--Load DataSet

传送门:Load Dataset
本讲主要是数据集的加载过程。视频中对数据集的加载以及shuffle、batch_size、Epoch解释的很清楚。
在这里插入图片描述

如图shuffle的作用如下图:

具体过程如代码所示:

注意:
1、Dataset() 是一个抽象函数,不能直接实例化,所以我们要创建一个自己类,继承Dataset
继承Dataset后我们必须实现三个函数:
init()是初始化函数,之后我们可以提供数据集路径进行数据的加载
getitem()帮助我们通过索引找到某个样本
len()帮助我们返回数据集大小
2、DataLoader(dataset,batch_size=32,shuffle=True,num_workers=0)是用来帮助加载数据,比如设置shuffle(混乱),设置batch_size大小等,因此可以实例化一个DataLoader进行数据集整理
batch_size是一个组中有多少个样本;shuffle表示要不要对样本进行随机排列;num_workers表示我们可以用多少进程并行的运算
一般来说,训练集我们随机排列,测试集不需要随机排列。

# -*- coding: UTF-8 -*-
'''===============================================
@Author :kidding
@Date   :2021/2/7 18:19
@File   :Load_Dataset
@IDE    :PyCharm
=================================================='''
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader,Dataset
'''
1、Prepare DataSet

'''
class DiabetesDataset(Dataset):
    def __init__(self,filepath):
        xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32) #加载训练集
        # shape本身是一个二元组(x,y)对应数据集的行数和列数,这里[0]我们取行数,即样本数
        self.len = xy.shape[0]
        self.x_data = torch.from_numpy(xy[:, :-1]) # 取前八列   第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
        self.y_data = torch.from_numpy(xy[:, [-1]]) # 取最后一列    [-1] 最后得到的是个矩阵
    def __getitem__(self, index):
        return self.x_data[index],self.y_data[index]
    def __len__(self):
        return self.len

#实例化DiabetesDataset
dataset = DiabetesDataset('./dataset/diabetes.csv.gz')
train_loader = DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)

'''
2、Design model
'''
class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.linear1 = torch.nn.Linear(8,6)
        self.linear2 = torch.nn.Linear(6,4)
        self.linear3 = torch.nn.Linear(4,1)
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self,x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))#将上面一行的输出作为输入
        x = self.sigmoid(self.linear3(x))#将上面一行的输出作为输入
        return x

model = Model()

'''
3、construct loss and optimizer
'''
criterion = torch.nn.BCELoss(reduction='mean')
#model.parameters()会扫描module中的所有成员,如果成员中有相应权重,那么都会将结果加到要训练的参数集合上
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)#lr为学习率,因为0.01太小了,我改成了0.1

Epoch_list =[]  #保存epoch
Loss_list = []  #保存每个epoch对应的loss

'''
4、Training Cycle : forward-->backward-->update
'''

if __name__ == '__main__':
    for epoch in range(10):
        for i,data in enumerate(train_loader,0):
            # repare data
            inputs, labels = data  # 将输入的数据赋给inputs,结果赋给labels
            # Forward
            y_pred = model(inputs) #得到 y_hat
            loss = criterion(y_pred,labels) # 得到Loss
            print("Epoch:", epoch,"i = ",i, "loss ={:.5f}".format(loss.item()))

            Epoch_list.append(epoch)
            Loss_list.append(loss)

            # Backward
            optimizer.zero_grad()   # 梯度置为0
            loss.backward() # 反向传播

            # update
            optimizer.step()    # 更新w和b的值
'''
5、Painting
'''
plt.plot(Epoch_list,Loss_list)
plt.title("SGD")
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.grid(ls='--')  # 生成网格
plt.show()

实现效果:
在这里插入图片描述

Loss图像如下:
在这里插入图片描述
问题:Loss损失会不断反复横跳。。暂时还在思考我具体原因。有知道的小伙伴可以评论区交流。谢谢!

PyTorch中训练CNN-GRU模型,可以使用nn.Module类来构建模型。下面是一个简单的示例代码,其中包含一个CNN层和一个GRU层: ```python import torch import torch.nn as nn class CNN_GRU_Model(nn.Module): def __init__(self): super(CNN_GRU_Model, self).__init__() # CNN layer self.cnn = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) # GRU layer self.gru = nn.GRU(input_size=32*6*6, hidden_size=64, num_layers=1, batch_first=True) # Output layer self.out = nn.Linear(64, 10) def forward(self, x): x = self.cnn(x) x = x.view(x.size(0), -1) x, _ = self.gru(x) x = self.out(x[:, -1, :]) return x ``` 在上述代码中,我们首先定义了一个`CNN_GRU_Model`类,继承自`nn.Module`类。该类包含三个层,分别是CNN层、GRU层和输出层。 在`__init__`函数中,我们定义了CNN层和GRU层。CNN层包含两个卷积层和两个池化层。GRU层包含一个单层的GRU网络,其中输入大小为32\*6\*6,隐藏层大小为64。输出层使用一个线性层,将GRU层的输出映射到10个类别上。 在`forward`函数中,我们首先将输入通过CNN层进行卷积和池化,然后将输出展平成二维张量。接着,我们将展平后的张量输入到GRU层中,得到GRU层的输出。最后,我们将GRU层的最后一个时间步的隐藏状态输入到输出层中,得到最终的分类结果。 接下来,我们可以使用上述模型来训练一个分类任务的数据集。假设我们使用的是CIFAR-10数据集,可以使用以下代码进行训练: ```python import torchvision.datasets as datasets import torchvision.transforms as transforms # Load CIFAR-10 dataset train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) # Define dataloader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # Define model model = CNN_GRU_Model() # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Train the model num_epochs = 10 for epoch in range(num_epochs): for images, labels in train_loader: # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # Evaluate the model on test set with torch.no_grad(): total = 0 correct = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = correct / total # Print the accuracy for each epoch print('Epoch [{}/{}], Accuracy: {:.2f}%'.format(epoch+1, num_epochs, accuracy*100)) ``` 在上述代码中,我们首先加载CIFAR-10数据集,并定义一个dataloader。然后,我们定义了模型、损失函数和优化器。接着,我们使用循环进行训练,每个epoch都对整个训练集进行一次遍历。在每个epoch中,我们使用测试集来评估模型的性能,并输出准确率。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值