传送门:Load Dataset
本讲主要是数据集的加载过程。视频中对数据集的加载以及shuffle、batch_size、Epoch解释的很清楚。
如图shuffle的作用如下图:
具体过程如代码所示:
注意:
1、Dataset() 是一个抽象函数,不能直接实例化,所以我们要创建一个自己类,继承Dataset
继承Dataset后我们必须实现三个函数:
init()是初始化函数,之后我们可以提供数据集路径进行数据的加载
getitem()帮助我们通过索引找到某个样本
len()帮助我们返回数据集大小
2、DataLoader(dataset,batch_size=32,shuffle=True,num_workers=0)是用来帮助加载数据,比如设置shuffle(混乱),设置batch_size大小等,因此可以实例化一个DataLoader进行数据集整理
batch_size是一个组中有多少个样本;shuffle表示要不要对样本进行随机排列;num_workers表示我们可以用多少进程并行的运算
一般来说,训练集我们随机排列,测试集不需要随机排列。
# -*- coding: UTF-8 -*-
'''===============================================
@Author :kidding
@Date :2021/2/7 18:19
@File :Load_Dataset
@IDE :PyCharm
=================================================='''
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader,Dataset
'''
1、Prepare DataSet
'''
class DiabetesDataset(Dataset):
def __init__(self,filepath):
xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32) #加载训练集
# shape本身是一个二元组(x,y)对应数据集的行数和列数,这里[0]我们取行数,即样本数
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:, :-1]) # 取前八列 第一个‘:’是指读取所有行,第二个‘:’是指从第一列开始,最后一列不要
self.y_data = torch.from_numpy(xy[:, [-1]]) # 取最后一列 [-1] 最后得到的是个矩阵
def __getitem__(self, index):
return self.x_data[index],self.y_data[index]
def __len__(self):
return self.len
#实例化DiabetesDataset
dataset = DiabetesDataset('./dataset/diabetes.csv.gz')
train_loader = DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)
'''
2、Design model
'''
class Model(torch.nn.Module):
def __init__(self):
super(Model,self).__init__()
self.linear1 = torch.nn.Linear(8,6)
self.linear2 = torch.nn.Linear(6,4)
self.linear3 = torch.nn.Linear(4,1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self,x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))#将上面一行的输出作为输入
x = self.sigmoid(self.linear3(x))#将上面一行的输出作为输入
return x
model = Model()
'''
3、construct loss and optimizer
'''
criterion = torch.nn.BCELoss(reduction='mean')
#model.parameters()会扫描module中的所有成员,如果成员中有相应权重,那么都会将结果加到要训练的参数集合上
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)#lr为学习率,因为0.01太小了,我改成了0.1
Epoch_list =[] #保存epoch
Loss_list = [] #保存每个epoch对应的loss
'''
4、Training Cycle : forward-->backward-->update
'''
if __name__ == '__main__':
for epoch in range(10):
for i,data in enumerate(train_loader,0):
# repare data
inputs, labels = data # 将输入的数据赋给inputs,结果赋给labels
# Forward
y_pred = model(inputs) #得到 y_hat
loss = criterion(y_pred,labels) # 得到Loss
print("Epoch:", epoch,"i = ",i, "loss ={:.5f}".format(loss.item()))
Epoch_list.append(epoch)
Loss_list.append(loss)
# Backward
optimizer.zero_grad() # 梯度置为0
loss.backward() # 反向传播
# update
optimizer.step() # 更新w和b的值
'''
5、Painting
'''
plt.plot(Epoch_list,Loss_list)
plt.title("SGD")
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.grid(ls='--') # 生成网格
plt.show()
实现效果:
Loss图像如下:
问题:Loss损失会不断反复横跳。。暂时还在思考我具体原因。有知道的小伙伴可以评论区交流。谢谢!